

Installation Instructions

SAFETY CONSIDERATIONS

Screw liquid chillers are designed to provide safe and reliable service when operated within design specifications. When operating this equipment, use good judgment and safety precautions to avoid damage to equipment and property or injury to personnel.

Be sure you understand and follow the procedures and safety precautions contained in the machine instructions, as well as those listed in this guide.

⚠ DANGER

Failure to follow these procedures will result in severe personal injury or death.

DO NOT VENT refrigerant relief devices within a building. Outlet from rupture disc or relief valve must be vented outdoors in accordance with the latest edition of ANSI/ASHRAE 15 (American National Standards Institute/American Society of Heating, Refrigerating, and Air-Conditioning Engineers). The accumulation of refrigerant in an enclosed space can displace oxygen and cause asphyxiation.

PROVIDE adequate ventilation in accordance with ANSI/ASHRAE 15, especially for enclosed and low overhead spaces. Inhalation of high concentrations of vapor is harmful and may cause heart irregularities, unconsciousness, or death. Intentional misuse can be fatal. Vapor is heavier than air and reduces the amount of oxygen available for breathing. Product causes eye and skin irritation. Decomposition products are hazardous.

DO NOT USE OXYGEN to purge lines or to pressurize a machine for any purpose. Oxygen gas reacts violently with oil, grease, and other common substances.

DO NOT USE air for leak testing. Use only refrigerant or dry nitrogen.

NEVER EXCEED specified test pressures, VERIFY the allowable test pressure by checking the instruction literature and the design pressures on the equipment nameplate.

DO NOT VALVE OFF any safety device.

BE SURE that all pressure relief devices are properly installed and functioning before operating any machine.

RISK OF INJURY OR DEATH by electrocution. High (or medium) voltage is present on motor leads even though the motor is not running. Open the power supply disconnect before touching motor leads or terminals.

UNIT AND ELECTRICAL CONSTRUCTION is designed for use in a non-hazardous environment (non-flammable and non-explosive). DO NOT install the chiller in a hazardous (flammable or explosive) location or environment.

↑ WARNING

Failure to follow these procedures may result in personal injury or death.

DO NOT USE TORCH to remove any component. System contains oil and refrigerant under pressure.

To remove a component, wear protective gloves and goggles and proceed as follows:

- a. Shut off electrical power to unit.
- b. Recover refrigerant to relieve all pressure from system using both high-pressure and low pressure ports.
- c. Traces of vapor should be displaced with nitrogen and the work area should be well ventilated. Refrigerant in contact with an open flame produces toxic gases.
- d. Cut component connection tubing with tubing cutter and remove component from unit. Use a pan to catch any oil that may come out of the lines and as a gage for how much oil to add to the system.
- e. Carefully unsweat remaining tubing stubs when necessary. Oil can ignite when exposed to torch flame.

DO NOT USE eyebolts or eyebolt holes to rig heat exchangers or the entire assembly.

DO NOT work on high (or medium) voltage equipment unless you are a qualified electrician.

DO NOT WORK ON electrical components, including control panels, switches, starters, or oil heater until you are sure ALL POWER IS OFF and no residual voltage can leak from capacitors or solid-state components.

LOCK OPEN AND TAG electrical circuits during servicing. IF WORK IS INTERRUPTED, confirm that all circuits are deenergized before resuming work.

AVOID SPILLING liquid refrigerant on skin or getting it into the eyes. USE SAFETY GOGGLES. Wash any spills from the skin with soap and water. If liquid refrigerant enters the eyes, IMMEDIATELY FLUSH EYES with water and consult a physician.

NEVER APPLY an open flame or live steam to a refrigerant cylinder. Dangerous over pressure can result. When it is necessary to heat refrigerant, use only warm (110 F [43 C]) water.

DO NOT REUSE disposable (nonreturnable) cylinders or attempt to refill them. It is DANGEROUS AND ILLE-GAL. When cylinder is emptied, evacuate remaining gas pressure, loosen the collar, and unscrew and discard the valve stem. DO NOT INCINERATE.

CHECK THE REFRIGERANT TYPE before adding refrigerant to the machine. The introduction of the wrong refrigerant can cause machine damage or malfunction.

(Warnings continued on next page.)

⚠ WARNING

Operation of this equipment with refrigerants other than those cited herein should comply with ANSI/ASHRAE 15 (latest edition). Contact Carrier for further information on use of this machine with other refrigerants.

DO NOT ATTEMPT TO REMOVE fittings, covers, etc., while machine is under pressure or while machine is running. Be sure pressure is at 0 psig (0 kPa) before breaking any refrigerant connection.

CAREFULLY INSPECT all relief valves, rupture discs, and other relief devices AT LEAST ONCE A YEAR. If machine operates in a corrosive atmosphere, inspect the devices at more frequent intervals.

DO NOT ATTEMPT TO REPAIR OR RECONDITION any relief valve when corrosion or build-up of foreign material (rust, dirt, scale, etc.) is found within the valve body or mechanism. Replace the valve.

DO NOT install relief devices in series or backwards.

USE CARE when working near or in line with a compressed spring. Sudden release of the spring can cause it and objects in its path to act as projectiles.

SOME MODELS MAY EXCEED 85 dBA. Hearing protection should be worn when working in the vicinity of such chillers.

A CAUTION

Failure to follow these procedures may result in personal injury or damage to equipment.

DO NOT STEP on refrigerant lines. Broken lines can whip about and release refrigerant, causing personal injury.

DO NOT climb over a machine. Use platform, catwalk, or staging. Follow safe practices when using ladders.

USE MECHANICAL EQUIPMENT (crane, hoist, etc.) to lift or move inspection covers or other heavy components. Even if components are light, use mechanical equipment when there is a risk of slipping or losing your balance.

BE AWARE that certain automatic start arrangements CAN ENGAGE THE STARTER, TOWER FAN, OR PUMPS. Open the disconnect ahead of the starter, tower fan, and pumps. Shut off the machine or pump before servicing equipment.

USE only repaired or replacement parts that meet the code requirements of the original equipment.

DO NOT VENT OR DRAIN waterboxes containing industrial brines, liquid, gases, or semisolids without the permission of your process control group.

DO NOT LOOSEN waterbox cover bolts until the waterbox has been completely drained.

DOUBLE-CHECK that coupling nut wrenches, dial indicators, or other items have been removed before rotating any shafts.

DO NOT LOOSEN a packing gland nut before checking that the nut has a positive thread engagement.

PERIODICALLY INSPECT all valves, fittings, and piping for corrosion, rust, leaks, or damage.

PROVIDE A DRAIN connection in the vent line near each pressure relief device to prevent a build-up of condensate or rain water.

DO NOT re-use compressor oil or any oil that has been exposed to the atmosphere. Dispose of oil per local codes and regulations.

↑ CAUTION

DO NOT leave refrigerant system open to air any longer than the actual time required to service the equipment. Seal circuits being serviced and charge with dry nitrogen to prevent oil contamination when timely repairs cannot be completed.

CONTENTS

CONTENTS	age
SAFETY CONSIDERATIONS	1 2
INTRODUCTION	
General	
Job Data	
INSTALLATION	1-65
• INSPECT SHIPMENT	3
• IDENTIFY MACHINE	
INSTALLATION REQUIREMENTS	
PROVIDE MACHINE PROTECTION	
Step 2 — Rig the Machine	. 10
 RIG MACHINE ASSEMBLY 	
 RIG MACHINE COMPONENTS 	
Step 3 — Separate Machine Components	. 24
 SEPARATE COOLER AND CONDENSER 	
REMOVE THE CONTROLS/DRIVE ENCLOSURE	
REMOVE THE DISCHARGE PIPE ASSEMBLY FROM THE COMPENSER.	
FROM THE CONDENSER • SEPARATE THE COMPRESSOR	
SEPARATE THE COMPRESSORSEPARATE THE VAPORIZER FROM THE	
CONDENSER	
Sten 4 — Install VFD	33
Step 4 — Install VFD	. 38
INSTALL STANDARD ISOLATION	
 INSTALL ACCESSORY ISOLATION 	
• INSTALL SPRING ISOLATION	
Step 6 — Connect Piping	. 41
INSTALL WATER PIPING TO HEAT EYCHANGERS	
EXCHANGERSINSTALL VENT PIPING TO RELIEF VALVES	
Step 7 — Make Electrical Connections	50
• GROUNDING THE CONTROLS/DRIVE	. 30
ENCLOSURE	
 INSTALLING INPUT POWER WIRING 	
 WIRING THE FIELD WIRING TERMINAL STRIP 	S
FOR LF-2 VFD	
 WIRING THE FIELD WIRING TERMINAL STRIP 	S
FOR STD TIER VFD	
CONNECT CONTROL OUTPUTS CONNECT CONTROL OUTPUTS	
CONNECT CONTROL OUTPUTSCONNECT STARTER	
COMPLETING THE INSTALLATION	71
Checking the Installation	
Oil Pump and Oil Heater	66
Connect Control Wiring	. 66
Connect Control Wiring	. 66
BACnet Communication Option Wiring	. 67
Lead-Lag Control Wiring	. 67
Install Field Insulation	. 67
INSTALLATION START-UP REQUEST	
CHECKLIST CL-1, C	L-2

INTRODUCTION

General — The 23XRV machine is factory assembled, wired, and leak tested. Installation (not by Carrier) consists primarily of establishing water and electrical services to the machine. The rigging, installation, field wiring, field piping, and insulation of waterbox covers are the responsibility of the

contractor and/or customer. Carrier has no installation responsibilities for the equipment.

Job Data — Necessary information consists of:

- job contract or specifications
- machine location prints
- rigging information
- piping prints and details
- field wiring drawings
- · starter manufacturer's installation details
- Carrier certified print

INSTALLATION

Step 1 — Receive the Machine

INSPECT SHIPMENT

A CAUTION

Do not open any valves or loosen any connections. The 23XRV machine may be shipped with a full refrigerant charge. Some machines may be shipped with a nitrogen holding charge as an option.

- 1. Inspect for shipping damage while machine is still on shipping conveyance. If machine appears to be damaged or has been torn loose from its anchorage, have it examined by transportation inspectors before removal. Forward claim papers directly to transportation company. Manufacturer is not responsible for any damage incurred in transit.
- 2. Check all items against shipping list. Immediately notify the nearest Carrier representative if any item is missing.
- 3. To prevent loss or damage, leave all parts in original packages until beginning installation. All openings are closed with covers or plugs to prevent dirt and debris from entering machine components during shipping. A full operating oil charge is placed in the oil sump before shipment.

IDENTIFY MACHINE (FIG. 1-8) — Refer to machine nameplate in Fig. 1. The machine model number, serial number, and heat exchanger sizes are stamped on the Refrigeration Machine nameplate located on the side of the VFD (variable frequency drive) enclosure. Check this information against shipping papers and job data.

<u>Identifying Drive by Part Number</u> — The VFD drive can be identified by its part number (Fig. 9). This number appears on the shipping label and on VFD nameplate.

<u>Drive Input Component Location</u> — Figure 10 identifies the control center components for the LiquiFlo 2.0 (LF-2) VFD. Figure 11 identifies the control center components for the Std Tier VFD.

Identifying Power Module by ID Number — Each LF-2 AC power module can be identified by its ID number. See Fig. 9. This number appears on the shipping label and on the power module's nameplate. Power ratings for LF-2 VFDs are provided in Table 1. Power ratings for Std Tier VFDs are provided in Table 2.

INSTALLATION REQUIREMENTS — Certain installation requirements should be checked before continuing with the chiller's electrical installation. Input power wire sizes, branch circuit protection, and control wiring are all areas that need to be evaluated.

<u>Determining Wire Size Requirements</u> — Wire size should be determined based on the size of the conduit openings and applicable local, national, and international codes (e.g., NEC [National Electric Code]/CEC [California Energy Commission] regulations). General recommendations are included in the Carrier field wiring drawing.

	Carrier A Uthad Technologies Company										
REF	RIGE	RATIC	M M	ACI	INE						
	N	ODEL NU	MBER		SERIAL	NO.					
MACHINE											
COMPRESSOR											
COOLER											
CONDENSER											
ECON											
STOR TANK											
VFD											
REFRIGERA	NT _		LE	38.		KGS.					
R-			CI	IARG	ED						
TEST PRESSURE			1	PSI		KPA					
DESIGN PRES	SURE		1	P\$I		KPA					
CLR.WATER PRE	SSURE		1	PSI		KPA					
COND.WATER PR	ESSURE		1	PSI		KPA					
RATED TONS											
RATED IKW											
NAMEPLATE VO	LTS/PH	ASE/HER	TZ								
UTILIZATION	VOLTAG	E									
MIN CIRCUI	T AM	PACITY									
9 C A	701 O HARLO SSEME		ESVILL RTH CAR N USA	OLIN							
PRODUCTION YEAR, 20XX SAFETY CODE CERTIFICATION THIS UNIT IS DESIGHED, CONSTRUCTED, AND TESTED IN CONCONMANCE WITH ANSI/ASHRAE IS (LAIREST REVISION), SAFETY CODE FOR MECHANICAL REFIGERATION THE COMPRESSOR MOTOR CONTROLLER AND OVERSOR PROTECTION MUST BE SPECIFICATION 2-420.											
						1 867, 6.4					

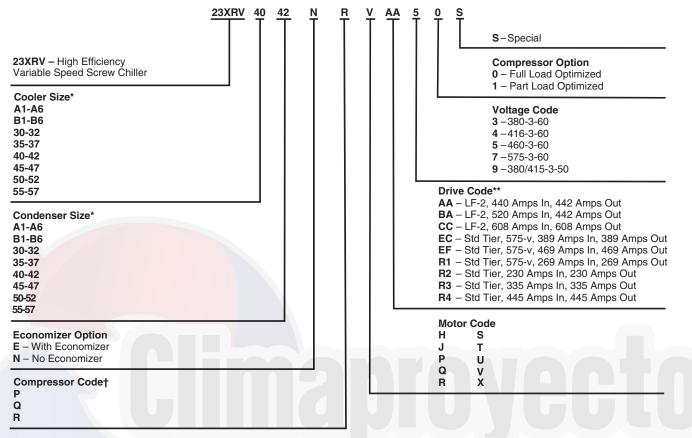
Fig. 1 — Refrigeration Machine Nameplate

<u>Conduit Entry Size</u> — It is important to determine the size of the conduit openings in the enclosure power entry plate so that the wire planned for a specific entry point will fit through the opening. Do NOT punch holes or drill into the top surface of the control center enclosure for field wiring. Knockouts are provided in the back of the control center for field control wiring connections.

Recommended Control and Signal Wire Sizes The recommended minimum size wire to connect I/O signals to the control terminal blocks is 18 AWG (American Wire Gage). Recommended terminal tightening torque is 7 to 9 in.-lb (0.79 to 1.02 N-m).

Recommended Airflow Clearances — Be sure there is adequate clearance for air circulation around the enclosure. A 6-in. (152.4 mm) minimum clearance is required wherever vents are located in the VFD enclosure.

Match Power Module Input and Supply Power Ratings — It is important to verify that building power will meet the input power requirements of the Machine Electrical Data nameplate input power rating. Be sure the input power to the chiller corresponds to the chiller's nameplate voltage, current, and frequency. Refer to machine nameplate in Fig. 12. The machine electrical data nameplate is located on the right side of the control center.


PROVIDE MACHINE PROTECTION — Protect machine and VFD enclosure from construction dirt and moisture. Keep protective shipping covers in place until machine is ready for installation.

If machine is exposed to freezing temperatures after water circuits have been installed, open waterbox drains and remove all water from cooler and condenser. Leave drains open until system is filled.

It is important to properly plan before installing a 23XRV unit to ensure that the environment and operating conditions

are satisfactory. The installation must comply with all requirements in the certified prints.

Chiller should be installed in an indoor environment where the ambient temperature is between 40 and 104 F (4 and 40 C) with relative humidity of 95% or less.

*First character denotes frame size.

Fig. 2 — Model Number Identification

[†]Only H and J motors are used with P compressors. Only type V motors are used with Q compressors.

^{**}Maximum limits only. Additional application limits apply that may reduce these ampacities.

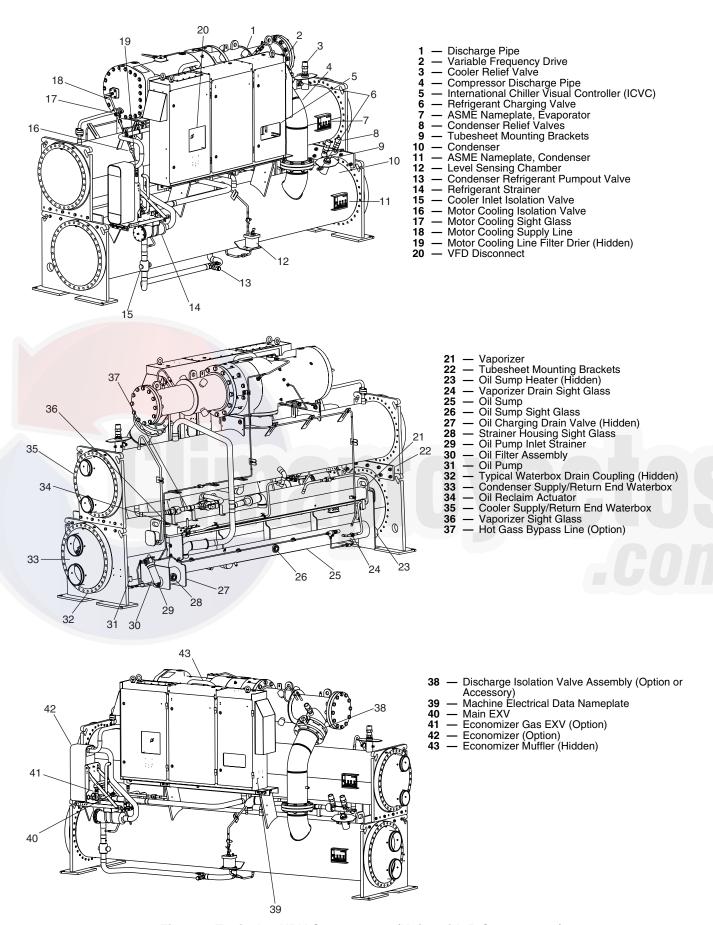


Fig. 3 — Typical 23XRV Components (Units with P Compressor)

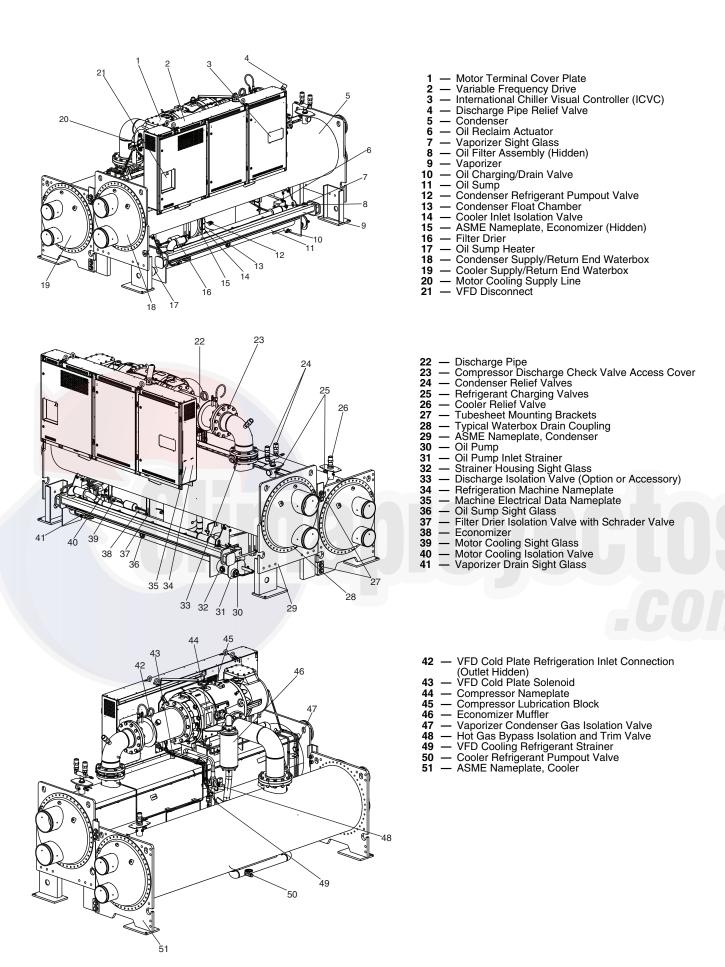


Fig. 4 — Typical 23XRV Components (Units with Q Compressor)

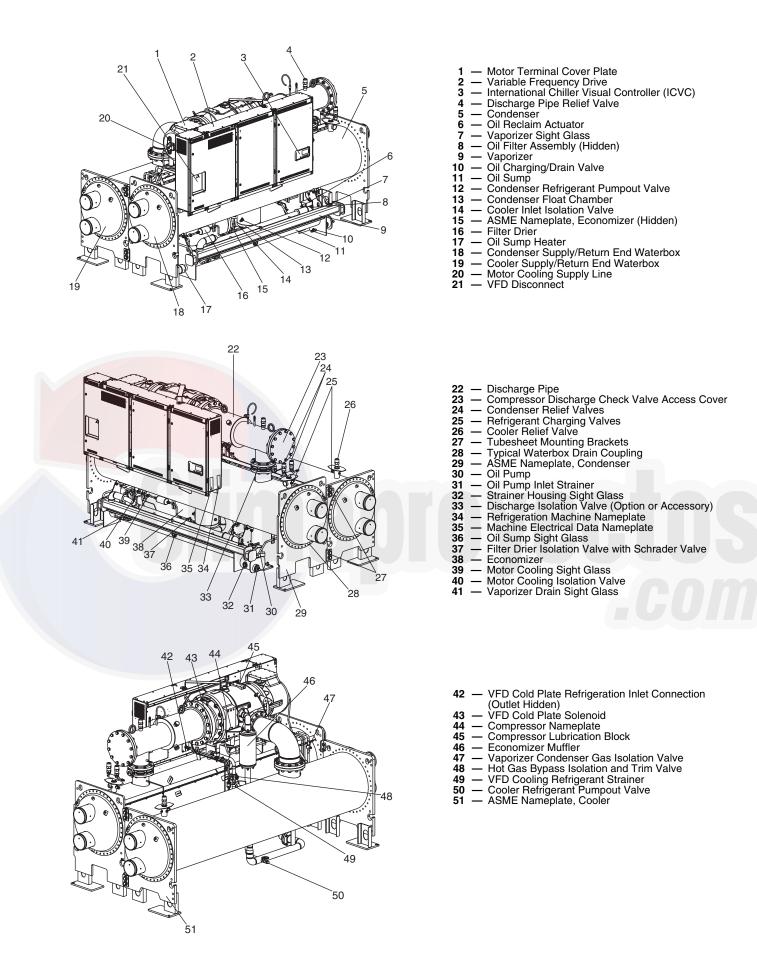


Fig. 5 — Typical 23XRV Components (Units with R Compressor)

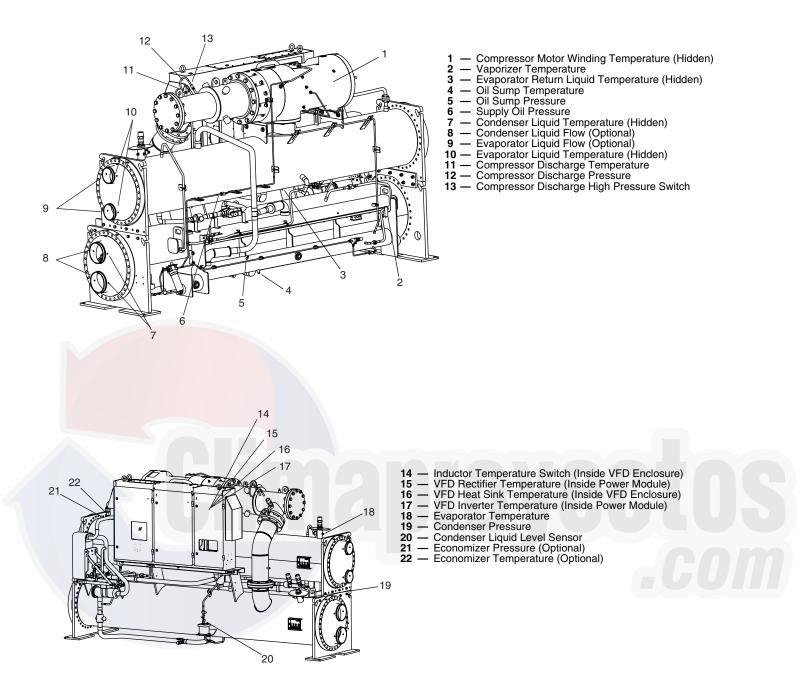


Fig. 6 — Typical 23XRV Installation — Sensor Locations (Units with P Compressor)

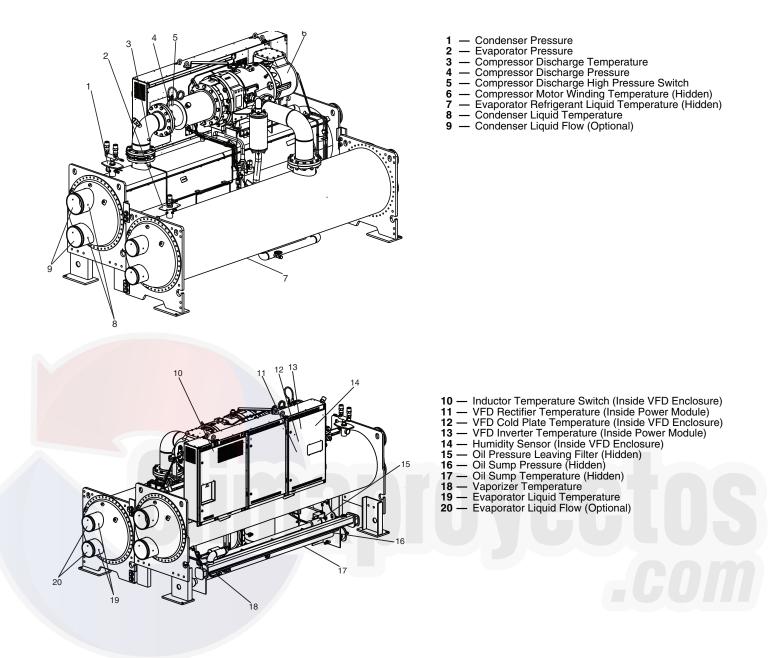
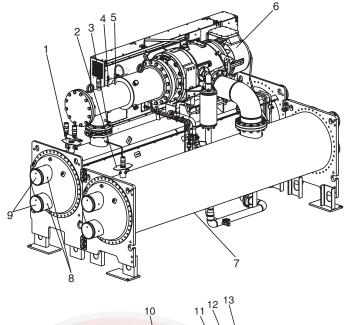
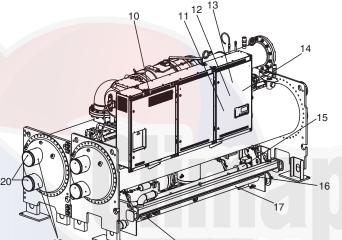




Fig. 7 — Typical 23XRV Installation — Sensor Locations (Units with Q Compressor)

- Condenser Pressure **Evaporator Pressure**
- Compressor Discharge Temperature
- Compressor Discharge Pressure
- Compressor Discharge High Pressure Switch Compressor Motor Winding Temperature (Hidden) Evaporator Refrigerant Liquid Temperature (Hidden)
- Condenser Liquid Temperature
- Condenser Liquid Flow (Optional)

- Inductor Temperature Switch (Inside VFD Enclosure)
- VFD Rectifier Temperature (Inside Power Module)
 VFD Cold Plate Temperature (Inside VFD Enclosure)
- VFD Cold Flate Temperature (Inside VFD Enclosure)
 VFD Inverter Temperature (Inside Power Module)
 Humidity Sensor (Inside VFD Enclosure)
 Oil Pressure Leaving Filter (Hidden)
 Oil Sump Pressure (Hidden)

- Oil Sump Temperature (Hidden)
- Vaporizer Temperature
- Evaporator Liquid Temperature
- 20 Evaporator Liquid Flow (Optional)

Fig. 8 — Typical 23XRV Installation — Sensor Locations (Units with R Compressor)

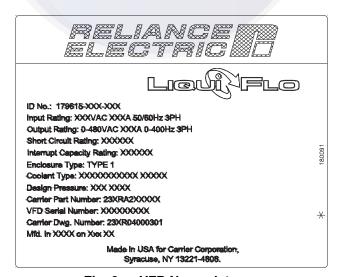


Fig. 9 — VFD Nameplate

Step 2 — Rig the Machine — The 23XRV machine can be rigged as an entire assembly. Large interconnecting piping has flanged connections that allow the compressor, cooler, and condenser sections to be separated and rigged individually. In addition, the VFD can be removed and rigged separately.

RIG MACHINE ASSEMBLY — See rigging instructions on label attached to machine. Also refer to rigging guide (Fig. 13), physical data in Fig. 14 and 15, and Tables 3-19. Lift machine only from the points indicated in rigging guide. Each lifting cable or chain must be capable of supporting the entire weight of the machine.

MARNING

Lifting machine from points other than those specified may result in serious damage to the unit and personal injury. Rigging equipment and procedures must be adequate for machine weight. See Fig. 13 for machine weights.

NOTE: These weights are broken down into component sections for use when installing the unit in sections. For the complete machine weight, add all component sections and refrigerant charge together. See Tables 8-19 for machine component weights.

Contractors are not authorized to disassemble any part of the chiller without Carrier's supervision. Any request otherwise must be in writing from the Carrier Service Manager.

NOTE: Carrier suggests that a structural engineer be consulted if transmission of vibrations from mechanical equipment is of concern.

Fig. 10 — Control Center Components (LF-2 VFD)

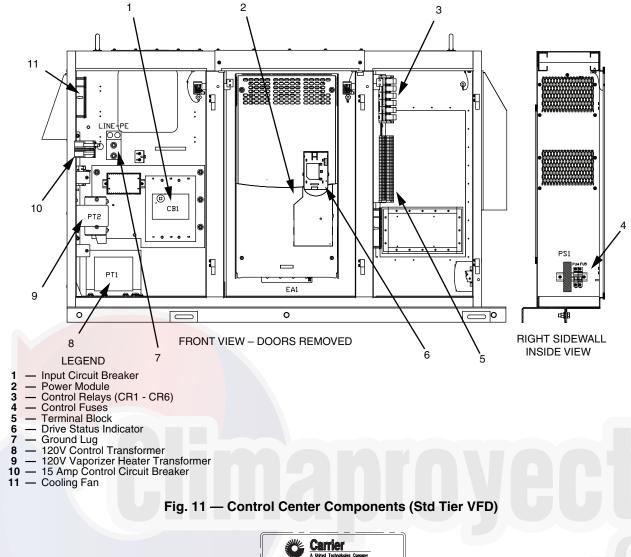


Fig. 11 — Control Center Components (Std Tier VFD)

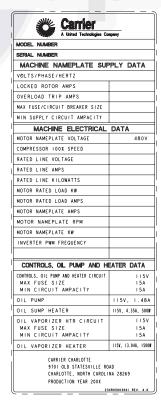


Fig. 12 — Machine Electrical Data Nameplate

Table 1 — Drive Assembly and Power Module Ratings (LF-2 VFD)

CARRIER PART NUMBER	VFD FRAME SIZE	ENCLOSURE TYPE	INPUT VOLTAGE (V) RANGE	MAX INPUT CURRENT (AMPS)	MAX OUTPUT CURRENT* AT 4 kHz (AMPS)
23XRA2AA	Frame 2AA	NEMA 1	380 to 460	440	440
23XRA2BA	Frame 2BA	NEMA 1	380 to 460	520	440
23XRA2BB	Frame 2BB	NEMA 1	380 to 460	520	520
23XRA2CC	Frame 2CC	NEMA 1	380 to 460	608	608

^{*110%} output current capability for one minute, 150% output current for 5 seconds.

Table 2 — Drive Assembly and Power Module Ratings (Std Tier VFD)*

CARRIER PART NUMBER	ENCLOSURE TYPE		IPUT VOLTAGE DIGIT Y OF PART NUMBER)	MAX INPUT CURRENT	MAX OUTPUT CURRENT† AT 2 kHz	
		Υ	VOLTAGE/HZ	(AMPS)	(AMPS)	
23XVR000YF0** (R = ROCKWELL)	NEMA 1	3 4 5	380v / 60 Hz 416v / 60 Hz 460v / 60 Hz	230 269 335 445	230 269 335 445	
23XVE000YF0 (E = EATON)		7 9	575v / 60 Hz 400v / 50 Hz	485 550 605	485 550 605	

^{*}All voltage and current combinations listed may not be available for sale. Please review Carrier Marketing literature for latest offering. †110% output current capability for one minute, 150% output current for 5 seconds.

** Last character 0 indicates refrigerant-cooled; last digit A indicates air-cooled.

	HEAT	MAYIMUM WEIGHT	VESSEL	DIM.	CH	IAIN LENG	TH	DIM.	DIM.
COMPRESSOR TYPE*	EXCHANGER	MAXIMUM WEIGHT	LENGTH	"A"	"B"	"C"	"D"	"E"	"F"
	CODE	lb	ft	ft-in.	ft-in.	ft-in.	ft-in.	ft-in.	ft-in.
Р	A1-A6	15,582	12'	6' -7"	12'- 5"	11'-6"	11'-10"	3'-6"	1′ -6″
P	B1-B6	16,391	14'	7'- 5"	13'- 0"	12'-0"	12'- 4"	3'-6"	1′ -6″
	30-32	17,962	12′	6'-10"	13'- 5"	13'-0"	12'- 5"	3'-11"	3'- 8"
	35-37	19,501	14′	7′- 8″	13'-10"	13'-5"	12'-10"	3'-11"	3'- 8"
•	40-42	21,032	12′	6'-10"	13'- 6"	12'-8"	12'- 3"	4'- 1"	3'-11"
Q	45-47	22,468	14′	7′- 8″	13′-11″	13'-2"	12'- 8"	4'- 1"	3'-11"
	50-52	23,856	12′	6'-10"	13'-10"	12'-7"	12'- 9"	4'- 0"	4'- 4"
	55-57	25,642	14′	7′- 8″	14'- 4"	13'-1"	13'- 1"	4'- 0"	4'- 4"
	30-32	19,187	12′	6'-10"	13'- 5"	13'-0"	12'- 5"	3'-11"	3'- 8"
	35-37	20,589	14′	7′- 8″	13'-10"	13'-5"	12'-10"	3'-11"	3'- 8"
R	40-42	23,928	12′	6'-10"	13'- 6"	12'-8"	12'- 3"	4'- 1"	3'-11"
n [45-47	25,167	14′	7′- 8″	13′-11″	13'-2"	12'- 8"	4'- 1"	3'-11"
	50-52	26,950	12′	6'-10"	13'-10"	12'-7"	12'- 9"	4'- 0"	4'- 4"
	55-57	28,479	14′	7'- 8"	14'- 4"	13′-1″	13'- 1"	4'- 0"	4'- 4"

	HEAT	MANUALIM MEIOLIT	VESSEL	DIM.	CI	HAIN LENG	TH	DIM.	DIM.
COMPRESSOR TYPE*	EXCHANGER	MAXIMUM WEIGHT	LENGTH	"A"	"B"	"C"	"D"	"E"	"F"
	CODE	kg	mm	mm	mm	mm	mm	mm	mm
0	A1-A6	7 068	3658	2007	3785	3505	3607	1067	457
P B1	B1-B6	7 435	4267	2261	3962	3658	3759	1067	457
	30-32	8 147	3658	2083	4089	3962	3785	1194	1118
	35-37	8 846	4267	2337	4216	4089	3912	1194	1118
Q	40-42	9 540	3658	2083	4115	3861	3734	1245	1194
Q	45-47	10 191	4267	2337	4242	4013	3861	1245	1194
	50-52	10 821	3658	2083	4216	3835	3886	1219	1321
	55-57	11 631	4267	2337	4369	3988	3988	1219	1321
	30-32	8 703	3658	2083	4089	3962	3785	1194	1118
	35-37	9 339	4267	2337	4216	4089	3912	1194	1118
В	40-42	10 854	3658	2083	4115	3861	3734	1245	1194
R	45-47	11 416	4267	2337	4242	4013	3861	1245	1194
	50-52	12 224	3658	2083	4216	3835	3886	1219	1321
	55-57	12 918	4267	2337	4369	3988	3988	1219	1321

^{*}The 11th character of the chiller model number indicates the compressor type.

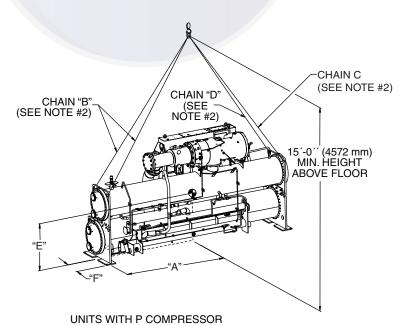
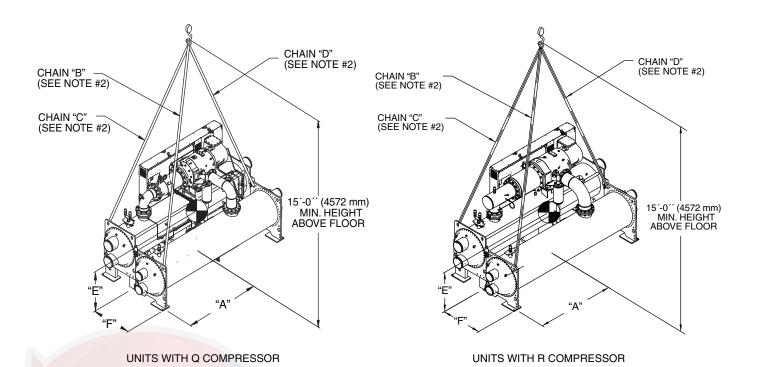



Fig. 13 — Machine Rigging Guide

NOTES:

- Each chain must be capable of supporting the entire weight of the machine. See chart for maximum weights.
- Chain lengths shown are typical for 15' (4572 mm) lifting height. Some minor adjustments may be required.
- required.

 3. Units with Q and R compressors are shown on page 15.

- NOTES:
 Each chain must be capable of supporting the entire weight of the machine. See chart for maximum weights.
 Chain lengths shown are typical for 15' (4572 mm) lifting height. Some minor adjustments may be required.
 See weight and chain length charts on page 14.

Fig. 13 — Machine Rigging Guide (cont)

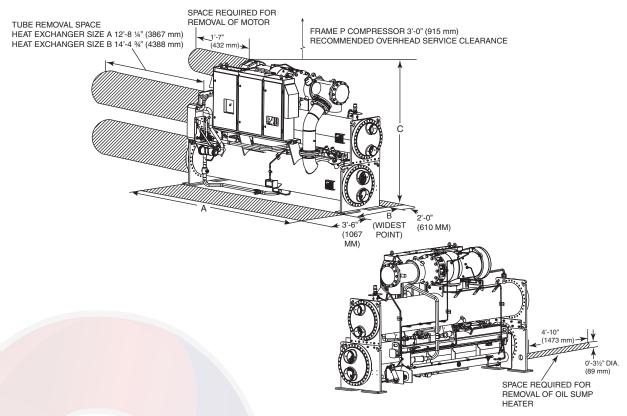


Fig. 14 — 23XRV Heat Exchanger Sizes A,B Dimensions (Unit with P Compressor Shown)

Table 3 — 23XRV Heat Exchanger Sizes A,B Dimensions (Nozzle-in-Head Waterbox)

HEAT EXCHANGER SIZE			B (WIDTH)						
	1-PASS		2-PASS	2-PASS		3-PASS		C (HEIGHT)	
	ft-in.	mm	ft-in.	mm	ft-in.	mm			
A	14- 6 ³ / ₄	4439	14- 11/4	4301	14- 6 ³ / ₄	4439	See unit certified drawing		
В	16- 3 ¹ / ₄	4959	15- 9 ³ / ₄	4822	16- 31/4	4959			

^{*1} or 3 pass length applies if either (or both) cooler or condenser is a 1 or 3 pass design. The 2-pass length assumes both cooler and condenser nozzles on same end of chiller.

NOTES:

- Service access should be provided per American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE) 15, latest edition, National Fire Protection Association (NFPA) 70, and local safety code.
 Allow at least 3 ft (915 mm) overhead clearance for service rigging for compressor.

- Certified drawings available upon request.

 Marine waterboxes may add 6 in. (152 mm) to the width of the machine. See certified drawings for details.

 'A' length dimensions shown are for standard 150 psig (1034 kPa) design and Victaulic connections. The 300 psig (2068 kPa) design and/or flanges will add length. See certified drawings.
- 6. Dished head waterbox covers are available only for 2-pass design.

Table 4 — 23XRV Heat Exchanger Sizes A,B Dimensions (Marine Waterbox)

HEAT EXCHANGER SIZE			A (LENG	iTH)*					
	1-PASS		2-PASS		3-PASS		B (WIDTH)	C (HEIGHT)	
	ft-in.	mm	ft-in.	mm	ft-in.	mm			
A	15- 9	4801	14- 6 ¹ / ₂	4435	15- 5	4699	See unit certified drawing		
В	17- 5 ¹ / ₂	5322	16- 3	4955	17- 1 ¹ / ₂	5220			

^{*1} or 3 pass length applies if either (or both) cooler or condenser is a 1 or 3 pass design. The 2-pass length assumes both cooler and condenser nozzles on same end of chiller.

NOTES:

- Service access should be provided per American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE) 15, latest edition, National Fire Protection Association (NFPA) 70, and local safety code.
- Allow at least 3 ft (915 mm) overhead clearance for service rigging for the compressor.

- Certified drawings available upon request.

 Marine waterboxes may add 6 in. (152 mm) to the width of the machine. See certified drawings for details.

 'A' length dimensions shown are for standard 150 psig (1034 kPa) design and Victaulic connections. The 300 psig (2068 kPa) design and/or flanges will add length. See certified drawings.

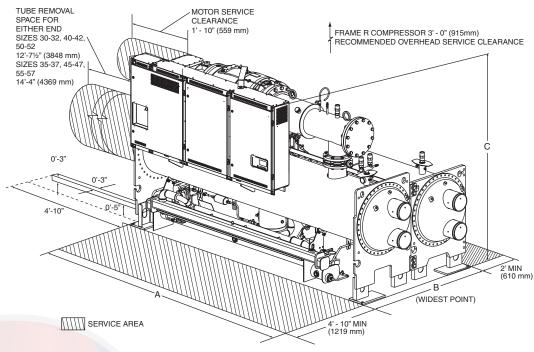


Fig. 15 — 23XRV Heat Exchanger Sizes 30-57 Dimensions (Unit with R Compressor Shown)

Table 5 — 23XRV Dimensions Heat Exchanger Sizes 30-57 (Nozzle-In-Head Waterbox)

	Α	(LENGTH, \	WITH NOZZLE-	IN-HEAD \	WATERBOX)								
HEAT EXCHANGER SIZE	1-PASS		2-PASS*		3-PASS		B (WIDTH)	C (HEIGHT)					
JIZE	ft-in.	mm	ft-in.	mm	ft-in.	mm							
30 TO 32	14- 3 ¹ / ₄	4350	13- 8 ¹ / ₄	4172	14- 3 ¹ / ₄	4350							
35 TO 37	15-11 ³ / ₄	4870	15- 4 ³ / ₄	4693	15-11 ³ / ₄	4870	See unit						
40 TO 42	14- 9	4496	14- 31/8	4347	14- 6	4420							
45 TO 47	16- 5 ¹ / ₂	5017	15-11 ⁵ / ₈	4867	16- 2 ¹ / ₂	4940	certified drawings						
50 TO 52	14-10	4521	14- 41/2	4382	14- 6 ¹ / ₂	4432							
55 TO 57	16- 6 ¹ / ₂	5042	16- 1	4902	16- 3	4953							

^{*}Assumes both cooler and condenser nozzles on same end of chiller.

NOTES:

- Service access should be provided per American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE) 15, latest edition, National Fire Protection Association (NFPA) 70, and local safety code.
- Allow at least 3 ft (915 mm) overhead clearance for service rigging for frame R compressor.

- Certified drawings available upon request.

 Marine waterboxes may add 6 in. (152 mm) to the width of the machine. See certified drawings for details.

 'A' length dimensions shown are for standard 150 psig (1034 kPa) design and Victaulic connections. The 300 psig (2068 kPa) design and/or flanges will add length. See certified drawings.

 Dished head waterbox covers not available for 2 pass design.
- Dished head waterbox covers not available for 3 pass design.

Table 6 — 23XRV Heat Exchanger Sizes 30-57 Dimensions (Marine Waterbox)

	A (LE	ENGTH, MARINE	WATERBOX)						
HEAT EXCHANGER SIZE	2-PASS*		1 OR 3-PASS	i†	B (WIDTH)	C (HEIGHT)			
OIZL	ft-in.	mm	ft-in.	mm					
30 TO 32	14- 9	4496	16- 4 ³ / ₄	4997	<u> </u>				
35 TO 37	16- 5 ¹ / ₂	5017	18- 1 ¹ / ₄	5518					
40 TO 42	15- 23/4	4642	16- 3 ¹ / ₄	5086	See unit				
45 TO 47	16-11 ³ / ₄	5163	18- 43/4	5607	certified drawings				
50 TO 52	15- 3 ¹ / ₂	4661	16- 81/2	5093					
55 TO 57	17- 0	5182	18- 5	5613					

^{*}Assumes both cooler and condenser nozzles on same end of chiller.

†1 or 3 pass length applies if cooler is a 1 or 3 pass design.

- Service access should be provided per American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE) 15, latest edition, National Fire Protection Association (NFPA) 70, and local safety code.
- Allow at least 3 ft (915 mm) overhead clearance for service rigging for frame R compressor.
- Certified drawings available upon request.
- Marine waterboxes may add 6 in. (152 mm) to the width of the machine. See certified drawings for details.

 'A' length dimensions shown are for standard 150 psig (1034 kPa) design and Victaulic connections. The 300 psig (2068 kPa) design and/or flanges will add length. See certified drawings.

Table 7 — 23XRV Waterbox Nozzle Sizes

FRAME	NOZZLE SIZE (in.) (NOMINAL PIPE SIZE)										
SIZE		COOLER			CONDENSER						
	1-PASS	2-PASS	3-PASS	1-PASS	2-PASS	3-PASS					
A1-A3, B1-B3 NIH	8	6	6	8	6	6					
A4-A6, B4-B6 NIH	8	6	6	10	8	6					
A,B MARINE	8	6	6	N/A	6	N/A					
3	10	8	6	10	8	6					
4	10	8	6	10	8	6					
5	10	8	6	10	10	8					

Table 8 — 23XRV Compressor and Motor Weights

			ENGLI	SH	SI				
COMPRESSOR TYPE	MOTOR SIZE	TOTAL COMPRESSOR WEIGHT (lb)	STATOR WEIGHT (lb)	ROTOR WEIGHT (lb)	MOTOR TERMINAL COVER (lb)	TOTAL COMPRESSOR WEIGHT (kg)	STATOR WEIGHT (kg)	ROTOR WEIGHT (kg)	MOTOR TERMINAL COVER (kg)
Р	H,J	3036	110	167	N/A	1377	50	76	N/A
Q	V	4090	370	193	39	1855	168	88	18
R	P,Q,R,S, T,U,V,X	4866	441	229	46	2207	200	104	21

→ Table 9 — 23XRV Maximum Component Weights*

COMPONENT			3 HEAT ANGER	FRAME EXCH	4 HEAT ANGER				FRAME A HEAT EXCHANGER		FRAME B HEAT EXCHANGER	
		lb	kg	lb	kg	lb	kg	lb	kg	lb	kg	
Isolation Valves		70	32	70	32	115	52	70	32	70	32	
	P Compressor	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	
Suction Elbow	Q Compressor	159	72	187	85	184	83	N/A	N/A	N/A	N/A	
	R Compressor	179	81	237	108	232	105	N/A	N/A	N/A	N/A	
	P Compressor	N/A	N/A	N/A	N/A	N/A	N/A	584	265	584	265	
Discharge Elbow/ Muffler	Q Compressor	597	271	597	271	597	271	N/A	N/A	N/A	N/A	
Widifiei	R Compressor	747	339	747	339	747	339	N/A	N/A	N/A	N/A	
Vaporizer and Oil Su	mp	700	318	700	318	700	318	700	318	700	318	
Economizer		542	246	542	246	542	246	174	79	174	79	

LEGEND

VFD _ Variable Frequency Drive

*To determine compressor frame size, refer to Fig. 2. NOTE: Weights for the items in the above table must be added to obtain the total chiller weight.

Table 10 —VFD (Variable Frequency Drive) Weight Table

DRIVE TYPE	COMPRESSOR	VOLTAGE/Hz	AMPERAGE (A)	WEIGHT (lb)
		000/400/445/50	230	998
	P	380/400/415/50 and 480/60	335, 445	1200
Std. Tier		575/60	269	1200
		380/400/415/50 and 480/60	230	998
	Q/R	000/400/410/00 and 400/00	335, 445	1200
		575/60	389, 469	1650
		000 415 50/00	440	1400
1.50	1.50	380-415 50/60	520, 608	1800
LF2	Q/R	440,400,50/00	440	1500
		440-480 50/60	520, 608	1800

319 18

Table 11 — 23XRV Cooler Frame Size A1-A6, B1-B6 Heat Exchanger Weights

				ENGLISH						METRI	C (SI)			
FRAME SIZE	STEEL WT (lb)	COPPER WT (lb)	DRY RIGGING WT* (lb)	REFRIG. WT (lb)	SHIP WT (lb)	WATER VOL (Gal.)	OPER. WT (lb)	STEEL WT (kg)	COPPER WT (kg)	DRY RIGGING WT* (kg)	REFRIG. WT (kg)	SHIP WT (kg)	WATER VOL (L)	OPER. WT (kg)
A1	2506	734	3240	270	3510	47	3904	1137	333	1470	122	1592	178	1771
A2	2506	789	3295	290	3585	51	4009	1137	358	1495	132	1627	193	1819
А3	2506	889	3395	310	3705	57	4182	1137	403	1540	141	1681	216	1897
A4	2506	962	3468	330	3798	62	4315	1137	436	1573	150	1723	235	1958
A 5	2506	1076	3582	360	3942	69	4520	1137	488	1625	163	1788	261	2050
A6	2506	1190	3696	390	4086	77	4725	1137	540	1677	177	1854	291	2144
B1	2642	839	3481	305	3786	54	4236	1198	381	1579	138	1717	204	1921
B2	2642	901	3543	325	3868	58	4352	1198	409	1607	147	1754	220	1974
В3	2642	1016	3658	355	4013	65	4558	1198	461	1659	161	1820	246	2067
B4	2642	1099	3741	375	4116	71	4706	1198	498	1696	170	1866	269	2134
B5	2642	1229	3871	415	4286	79	4946	1198	557	1755	188	1943	299	2242
B6	2642	1360	4002	445	4447	87	5177	1198	617	1815	202	2017	329	2348

^{*}Dry rigging weight = Steel weight + Copper weight.

Table 12 — 23XRV Condenser Frame Size A1-A6, B1-B6 Heat Exchanger Weights

				ENGLISH						METRI	C (SI)			
FRAME SIZE	STEEL WT (lb)	COPPER WT (lb)	DRY RIGGING WT* (lb)	REFRIG. WT (lb)	SHIP WT (lb)	WATER VOL (Gal.)	OPER. WT (lb)	STEEL WT (kg)	COPPER WT (kg)	DRY RIGGING WT* (kg)	REFRIG. WT (kg)	SHIP WT (kg)	WATER VOL (L)	OPER. WT (kg)
A1	3390	734	4124	550	4674	47	5068	1538	333	1871	249	2120	178	2299
A2	3390	844	4234	550	4784	54	5237	1538	383	1921	249	2170	204	2375
А3	3390	944	4334	550	4884	61	5391	1538	428	1966	249	2215	231	2445
A4	3390	1049	4439	550	4989	67	5552	1538	476	2014	249	2263	254	2518
A5	3390	1190	4580	550	5130	77	5769	1538	540	2078	249	2327	291	2617
A6	3390	1345	4735	550	5285	87	6007	1538	610	2148	249	2397	329	2724
B1	3571	839	4410	625	5035	54	5485	1620	381	2001	283	2284	204	2488
B2	3571	964	4535	625	5160	62	5677	1620	437	2057	283	2340	235	2575
В3	3571	1078	4649	625	5274	69	5853	1620	489	2109	283	2392	261	2655
B4	3571	1198	4769	625	5394	77	6037	1620	543	2163	283	2446	291	2738
B5	3571	1360	4931	625	5556	87	6286	1620	617	2237	283	2520	329	2851
B6	3571	1537	5108	625	5733	99	6558	1620	697	2317	283	2600	375	2974

^{*}Dry rigging weight = Steel weight + Copper weight.

Table 13 — 23XRV Code 30-57 Heat Exchanger Weights

-			ENG	LISH						SI		
	DRY RIG	GING WEIGHT (lb)*		MACHINE CH	HARGE			GING WEIGHT (kg)*		MACHINE CH	IARGE	
CODE	COOLER	CONDENSER	REFRIG WEIG			D VOLUME (Gal.)	COOLER	CONDENSER	REFRIG WEIGH	ERANT HT (kg)		IQUID LUME (L)
	ONLY	ONLY	WITH ECONOMIZER	WITHOUT ECONOMIZER	COOLER	CONDENSER	ONLY	ONLY	WITH ECONOMIZER	WITHOUT ECONOMIZER	COOLER	CONDENSER
30	4148	3617	800	650	56	56	1882	1641	363	295	212	212
31	4330	3818	800	650	64	65	1964	1732	363	295	242	246
32	4522	4023	800	650	72	74	2051	1825	363	295	273	280
35	4419	4529	910	760	61	61	2004	2054	413	345	231	231
36	4627	4758	910	760	70	72	2099	2158	413	345	265	273
37	4845	4992	910	760	80	83	2198	2264	413	345	303	314
40	5008	4962	900	750	103	110	2272	2251	408	340	390	416
41	5178	5155	900	750	111	119	2349	2338	408	340	420	451
42	5326	5347	900	750	119	129	2416	2425	408	340	450	488
45	5463	5525	1015	865	112	120	2478	2506	460	392	424	454
46	5659	5747	1015	865	122	130	2567	2607	460	392	462	492
47	5830	5967	1015	865	130	141	2644	2707	460	392	492	534
50	5827	6013	1250	1100	132	147	2643	2727	567	499	500	557
51	6053	6206	1250	1100	143	156	2746	2815	567	499	541	591
52	6196	6387	1250	1100	150	165	2810	2897	567	499	568	625
55	6370	6708	1430	1280	144	160	2889	3043	649	581	545	606
56	6631	6930	1430	1280	156	171	3008	3143	649	581	591	647
57	6795	7138	1430	1280	164	181	3082	3238	649	581	621	685

^{*}Rigging weights are for standard tubes of standard wall thickness (Turbo-B3 and Spikefin 2, 0.025-in. [0.635 mm] wall).

NOTES: Cooler includes the suction elbow and 1/2 the distribution piping

Condenser includes float valve and sump, discharge stub-out, and 1/2 the distribution piping weight.

For special tubes refer to the 23XRV Computer Selection Program. All weights for standard 2-pass NIH (nozzle-in-head) design with Victaulic grooves.

Table 14 — 23XRV Additional Data for Cooler Marine Waterboxes*

LIEAT EVOLIANCED	ENG	LISH	9	SI
HEAT EXCHANGER FRAME, PASS	RIGGING WEIGHT (lb) (See Note 2)	WATER VOLUME (Gal.)	RIGGING WEIGHT (kg) (See Note 2)	WATER VOLUME (L)
FRAME A,B, 1 PASS, 150 psig (1034 kPa)	760	64	345	242
FRAME A,B, 2 PASS, 150 psig (1034 kPa)	400	29	181	110
FRAME A,B, 3 PASS, 150 psig (1034 kPa)	752	55	341	208
FRAME 3, 1 AND 3 PASS, 150 psig (1034 kPa)	730	84	331	318
FRAME 3, 2 PASS, 150 psig (1034 kPa)	365	42	166	159
FRAME 4, 1 AND 3 PASS, 150 psig (1034 kPa)	1888	109	856	413
FRAME 4, 2 PASS, 150 psig (1034 kPa)	944	54	428	204
FRAME 5, 1 AND 3 PASS, 150 psig (1034 kPa)	2445	122	1109	462
FRAME 5, 2 PASS, 150 psig (1034 kPa)	1223	61	555	231
FRAME A,B, 1 PASS, 300 psig (2068 kPa)	812	64	368	242
FRAME A,B, 2 PASS, 300 psig (2068 kPa)	436	29	198	110
FRAME A,B, 3 PASS, 300 psig (2068 kPa)	788	55	357	208
FRAME 3, 1 AND 3 PASS, 300 psig (2068 kPa)	860	84	390	318
FRAME 3, 2 PASS, 300 psig (2068 kPa)	430	42	195	159
FRAME 4, 1 AND 3 PASS, 300 psig (2068 kPa)	2162	109	981	413
FRAME 4, 2 PASS, 300 psig (2068 kPa)	1552	47	704	178
FRAME 5, 1 AND 3 PASS, 300 psig (2068 kPa)	2655	122	1204	462
FRAME 5, 2 PASS, 300 psig (2068 kPa)	1965	53	891	201

^{*}Add to heat exchanger data for total weights or volumes.

- 1. Weight adder shown is the same for cooler and condenser of equal frame size.

 2. For the total weight of a vessel with a marine waterbox, add
- these values to the heat exchanger weights (or volume).

Table 15 — 23XRV Additional Data for Condenser Marine Waterboxes*

HEAT EXCHANGER	ENG	LISH		SI .
FRAME, PASS	RIGGING WEIGHT (LB) (SEE NOTE 2)	WATER VOLUME (GAL)	RIGGING WEIGHT (KG) (SEE NOTE 2)	WATER VOLUME (L)
FRAME A,B, 1 PASS, 150 psig (1034 kPa)	N/A	N/A	N/A	N/A
FRAME A,B, 2 PASS, 150 psig (1034 kPa)	454	32	206	121
FRAME A,B, 3 PASS, 150 psig (1034 kPa)	N/A	N/A	N/A	N/A
FRAME 3, 1 AND 3 PASS, 150 psig (1034 kPa)	N/A	N/A	N/A	N/A
FRAME 3, 2 PASS, 150 psig (1034 kPa)	365	42	166	159
FRAME 4, 1 AND 3 PASS, 150 psig (1034 kPa)	N/A	N/A	N/A	N/A
FRAME 4, 2 PASS, 150 psig (1034 kPa)	989	54	449	204
FRAME 5, 1 AND 3 PASS, 150 psig (1034 kPa)	N/A	N/A	N/A	N/A
FRAME 5, 2 PASS, 150 psig (1034 kPa)	1195	60	542	227
FRAME A,B, 1 PASS, 300 psig (2068 kPa)	N/A	N/A	N/A	N/A
FRAME A,B, 2 PASS, 300 psig (2068 kPa)	491	42	223	159
FRAME A,B, 3 PASS, 300 psig (2068 kPa)	N/A	N/A	N/A	N/A
FRAME 3, 1 AND 3 PASS, 300 psig (2068 kPa)	N/A	N/A	N/A	N/A
FRAME 3, 2 PASS, 300 psig (2068 kPa)	430	42	195	159
FRAME 4, 1 AND 3 PASS, 300 psig (2068 kPa)	N/A	N/A	N/A	N/A
FRAME 4, 2 PASS, 300 psig (2068 kPa)	1641	47	744	178
FRAME 5, 1 AND 3 PASS, 300 psig (2068 kPa)	N/A	N/A	N/A	N/A
FRAME 5, 2 PASS, 300 psig (2068 kPa)	1909	50	866	189

*Add to heat exchanger data for total weights or volumes.

NOTES: 1. Weight adder shown is the same for cooler and condenser of equal frame size. 2. For the total weight of a vessel with a marine waterbox, add these values to the heat exchanger weights (or volume). → Table 16 — 23XRV Waterbox Cover Weights, Frames 3,4,5 — English (lb)*

						-	,	, ,	3	(- /		
			COOL	LER					CONDE	ENSER		
WATERBOX	FRAN	FRAME 3		ME 4	FRAI	ME 5	FRAI	VIE 3	FRAME 4		FRAME 5	
DESCRIPTION	VICTAULIC NOZZLES	FLANGED										
NIH 1 Pass Cover, 150 psig	282	318	148	185	168	229	282	318	148	185	168	229
NIH 2 Pass Cover, 150 psig	287	340	202	256	222	276	287	340	191	245	224	298
NIH 3 Pass Cover, 150 psig	294	310	472	488	617	634	294	310	503	519	628	655
NIH Plain End, 150 psig	243	243	138	138	154	154	225	225	138	138	154	154
MWB End Cover, 150 psig†	243/315	243/315	138/314	138/314	154/390	154/390	225/234	225/234	138/314	138/314	154/390	154/390
NIH 1 Pass Cover, 300 psig	411	486	633	709	764	840	411	486	633	709	764	840
NIH 2 Pass Cover, 300 psig	411	518	626	733	760	867	411	578	622	729	727	878
NIH 3 Pass Cover, 300 psig	433	468	660	694	795	830	433	468	655	689	785	838
NIH Plain End, 300 psig	291	291	522	522	658	658	270	270	522	522	658	658
MWB End Cover, 300 psig†	445/619	445/619	522/522	522/522	658/658	658/658	359/474	359/474	522/522	522/522	658/658	658/658

LEGEND

NIH — Nozzle-in-Head MWB — Marine Waterbox

- NOTES:

 1. Weight adder shown is the same for cooler and condenser of equal frame size.

 2. For the total weight of a vessel with a marine waterbox, add these values to the heat exchanger weights (or volume).

 3. Weight for NIH 2-pass cover, 150 psig (1034 kPa), is included in the heat exchanger weights shown in Tables 11-13.

→ Table 17 — 23XRV Waterbox Cover Weights, Frames 3,4,5 — SI (kg)*

_			COO	LER					COND	NSER		
WATERBOX	FRAME 3		FRAI	RAME 4 FRAME 5 FRAME 3 FRAME 4		ME 4	FRAME 5					
DESCRIPTION	VICTAULIC NOZZLES	FLANGED	VICTAULIC NOZZLES	FLANGED	VICTAULIC NOZZLES	FLANGED	VICTAULIC NOZZLES	FLANGED	VICTAULIC NOZZLES	FLANGED	VICTAULIC NOZZLES	FLANGED
NIH 1 Pass Cover, 1034 kPa	128	144	67	84	76	104	128	144	67	84	76	104
NIH 2 Pass Cover, 1034 kPa	130	154	92	116	101	125	130	154	87	111	102	135
NIH 3 Pass Cover, 1034 kPa	133	141	214	221	280	288	133	141	228	235	285	297
NIH Plain End, 1034 kPa	110	110	63	63	70	70	102	102	63	63	70	70
MWB End Cover 1034 kPa†	110/143	110/143	63/142	63/142	70/177	70/177	102/106	102/106	63/142	63/142	70/177	70/177
NIH 1 Pass Cover, 2068 kPa	186	220	287	322	347	381	186	220	287	322	346	381
NIH 2 Pass Cover, 2068 kPa	186	235	284	332	344	393	186	235	282	331	330	398
NIH 3 Pass Cover, 2068 kPa	196	212	299	315	361	376	196	212	297	313	356	380
NIH Plain End 2068 kPa	132	132	237	237	298	298	122	122	237	237	298	298
MWB End Cover 2068 kPa†	202/281	202/281	237/237	237/237	298/298	298/298	163/215	163/215	237/237	237/237	298/298	298/298

LEGEND

NIH — Nozzle-in-Head MWB — Marine Waterbox

NOTES:

- Weight adder shown is the same for cooler and condenser of equal frame size.
 For the total weight of a vessel with a marine waterbox, add these values to the heat exchanger weights (or volume).
 Weight for NIH 2-pass cover, 150 psig (1034 kPa), is included in the heat exchanger weights shown in Tables 11-13.

^{*}Rows with 2 entries list nozzle end and return end weights. †Add to heat exchanger data for total weights or volumes.

^{*}Rows with 2 entries list nozzle end and return end weights. †Add to heat exchanger data for total weights or volumes.

→ Table 18 — 23XRV Waterbox Cover Weights, Frames A/B — English (Ib)*

WATERBOX	COOLER FRA	MES A AND B	CONDENSER FR	AMES A AND B
DESCRIPTION	VICTAULIC NOZZLES	FLANGED	VICTAULIC NOZZLES	FLANGED
NIH,1-Pass Cover 150 psig	217	244	242	274
NIH,2-Pass Cover 150 psig	172	265	191	298
NIH,3-Pass Cover 150 psig	228	245	261	277
NIH/Marine Plain End, 150 psig	157	157	173	173
MWB Cover, 150 psig	296	296	332	332
NIH,1-Pass Cover 300 psig	217	271	242	312
NIH,2-Pass Cover 300 psig	172	301	191	334
NIH,3-Pass Cover 300 psig	228	263	261	295
NIH/Marine Plain End, 300 psig	157	157	173	173
MWB Cover, 300 psig	296	296	332	332

LEGEND

NIH Nozzle-in-Head **MWB** — Marine Waterbox

NOTES:

- 1. Weight adder shown is the same for cooler and condenser of equal frame size.
- For the total weight of a vessel with a marine waterbox, add
- these values to the heat exchanger weights (or volume).

 3. Weight for NIH 2-pass cover, 150 psig (1034 kPa), is included in the heat exchanger weights shown in Tables 11-13.

→ Table 19 — 23XRV Waterbox Cover Weights, Frames A/B — SI (kg)*

WATERBOX	COOLER FRA	MES A AND B	CONDENSER FR	AMES A AND B
DESCRIPTION	VICTAULIC NOZZLES	FLANGED	VICTAULIC NOZZLES	FLANGED
NIH,1-Pass Cover 1034 kPa	98	111	110	124
NIH,2-Pass Cover 1034 kPa	78	120	87	135
NIH,3-Pass Cover 1034 kPa	103	111	118	126
NIH/Marine Plain End, 1034 kPa	71	71	78	78
MWB Cover, 1034 kPa	134	134	151	151
NIH,1-Pass Cover 2068 kPa	98	123	110	142
NIH,2-Pass Cover 2068 kPa	78	137	87	151
NIH,3-Pass Cover 2068 kPa	103	119	118	134
NIH/Marine Plain End, 2068 kPa	71	71	78	78
MWB Cover, 2068 kPa	134	134	151	151

LEGEND

NIH Nozzle-in-Head Marine Waterbox MWB

RIG MACHINE COMPONENTS — Refer to Fig. 16-28 and Carrier Certified Prints for machine component disassembly.

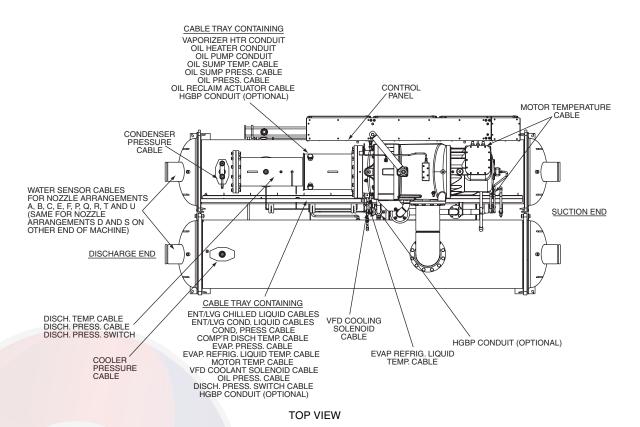
IMPORTANT: Only a qualified service technician should perform this operation.

⚠ WARNING

Do not attempt to disconnect flanges while the machine is under pressure. Failure to relieve pressure can result in personal injury or damage to the unit.

NOTES:

- 1. Weight adder shown is the same for cooler and condenser of equal frame size.
- For the total weight of a vessel with a marine waterbox, add
- these values to the heat exchanger weights (or volume). Weight for NIH 2-pass cover, 150 psig (1034 kPa), is included in the heat exchanger weights shown in Tables 11-13.


A CAUTION

Before rigging the compressor, disconnect all wires entering the power panel.

NOTE: Label each wire before removal when wiring must be disconnected (see Fig. 16 and 17). Clip all wire ties necessary when removing pressure and temperature sensors. Disconnect all pressure transducer wires at the sensor. Temperature sensors cannot be disconnected from their cables; remove temperature sensors from their thermowells and label as required.

^{*}Add to heat exchanger data for total weights or volumes.

^{*}Add to heat exchanger data for total weights or volumes.

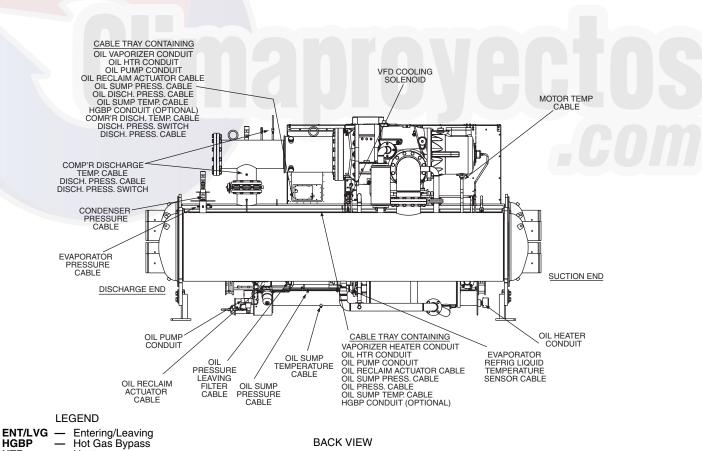
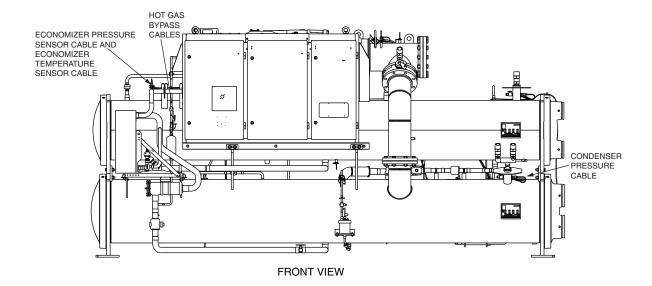


Fig. 16 — Electrical Cable Routing (Unit with R Compressor Shown)


HGBP

Heater

Variable Frequency Drive

HTR

VFD

COOLER PRESSURE CABLE **EVAPORATOR** TEMPERATURE SATURATED SENSOR CABLE TEMPERATURE SENSOR CABLE EVAPORATOR LEAVING LIQUID TEMPERATURE SENSOR CABLE **EVAPORATOR ENTERING** LIQUID TEMPERATURE SENSOR CABLE CONDENSER LEAVING LIQUID TEMPERATURE SENSOR CABLE CONDENSER ENTERING LIQUID TEMPERATURE SENSOR CABLE \Box OIL SUMF OIL HEATER CONDUIT OIL DISCHARGE PRESSURE **END VIEW** OIL SUMP CONDUIT CABLE PRESSURE TEMPERATURE SENSOR CABLE **BACK VIEW**

Fig. 17 — Electrical Cable Routing (Unit with P Compressor Shown)

Step 3 — Separate Machine Components -

The design of the 23XRVchiller allows for disassembly at the jobsite so that the individual chiller components may be moved through existing doorways. Use the following procedures to separate the machine components.

Suggested locations to cut piping will minimize the width of the condenser/economizer assembly.

SEPARATE COOLER AND CONDENSER

IMPORTANT: If the cooler and condenser vessels must be separated, the heat exchangers should be kept level by placing a support plate under the tube sheets. The support plate will also help to keep the vessels level and aligned when the vessels are bolted back together.

NOTE: For steps 1 through 13 refer to Fig. 18 for units with Q or R compressors, or Fig. 19 for units with P compressors. The cooler in Fig. 18 has been removed from the picture to show the pipes and lines that must be cut.

Check that the holding charge has been removed from the chiller.

- Place a support plate under each tube sheet to keep each vessel level (does not apply to units with P compressor).
- 2. Remove cooler relief valve and relief valve vent piping (cooler not shown in Fig. 18 or 19, see Fig. 3, 4, or 5).
- 3. Cut the motor cooling refrigerant drain line (see Fig. 18, item 4) (does not apply to units with P compressor).
- 4. Unbolt and rig the suction elbow off (does not apply to units with P compressor) and disconnect the compressor suction line at the cooler and compressor. Remove bolts from the vaporizer vent line flange.
- 5. Cut the VFD cooling drain line (see Fig. 18, item 11) (does not apply to units with P compressor).
- 6. Cut the oil reclaim line(s) (see Fig. 18, item 12, or Fig. 19, item 10).
- 7. Cut the hot gas bypass line between the HGBP (hot gas bypass) solenoid valve and cooler feed line (see Fig. 18, item 10, or Fig. 19, item 11).
- 8. Cut or unbolt the cooler liquid feed line (see Fig. 18, item 9, or Fig. 19, item 3), near the economizer or condenser float chamber at the flanged connection. For economized

- units with Q or R compressors, temporarily secure the inline economizer orifice plate to the economizer flange.
- 9. Cut the vaporizer refrigerant return line as shown (see Fig. 18, item 13, or Fig. 19, item 8).
- 10. Disconnect all sensors with cables that cross from the condenser side of the machine to the cooler side including:
 - a. Evaporator refrigerant liquid temperature sensor. See Fig. 20.

- b. Entering and leaving chiller liquid temperature sensors. See Fig. 21.
- c. Evaporator pressure sensor (not shown).
- 11. Disconnect the tubesheet mounting brackets from the vessel connectors on the tube cooler tubesheet.
- Cover all openings.
- 13. Rig the cooler away from the condenser/compressor.

NOTE: To reassemble, follow steps in reverse order. Connect sensors and cables after major components have been secured to reduce the risk of damaging them.

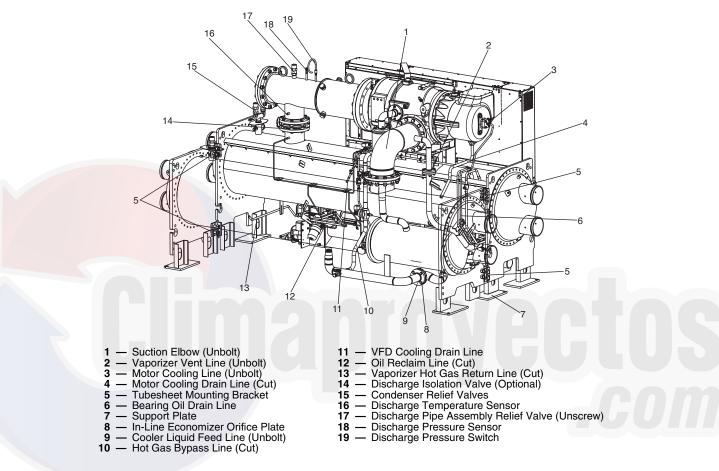


Fig. 18 — Cooler/Discharge Pipe Assembly Removal (Unit with R Compressor Shown)

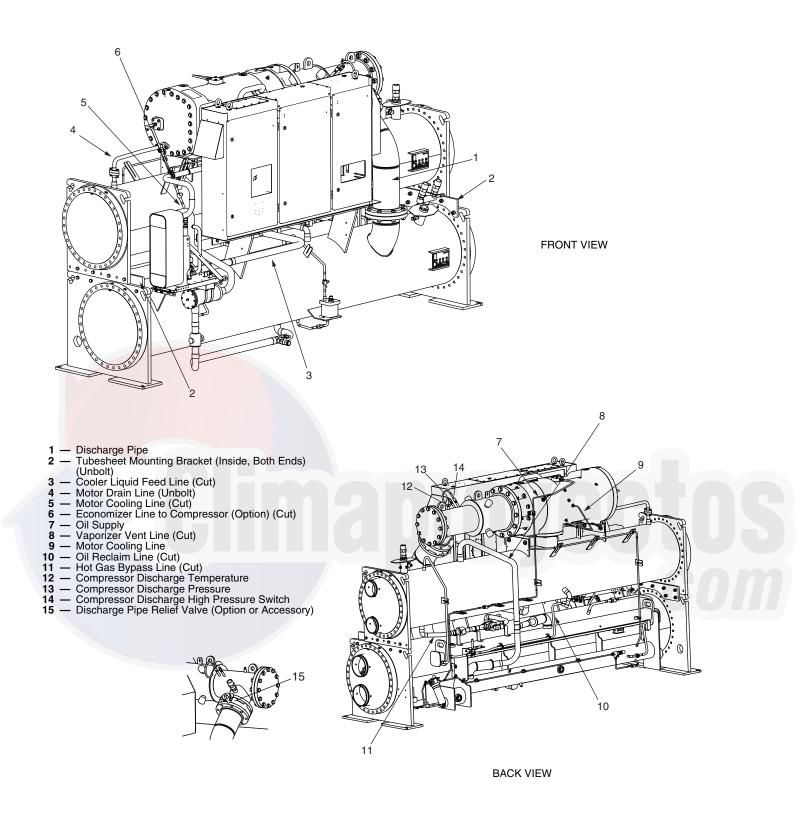


Fig. 19 — Cooler/Discharge Pipe Assembly Removal (Unit with P Compressor Shown)

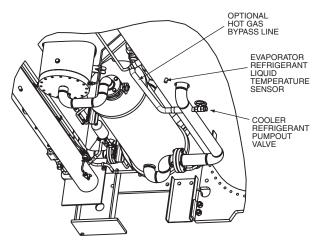


Fig. 20 — Evaporator Refrigerant Liquid Temperature Sensor on Bottom of Cooler (Units with Q,R Compressors Shown)

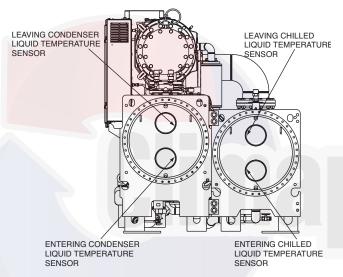


Fig. 21 — Chiller End View (Q,R Compressors Only)

A CAUTION

Do not rig the condenser before the control center and compressor are removed. The condenser/compressor assembly has a high center of gravity and may tip over when lifted at the tubesheet rigging points, which could result in equipment damage and/or serious personal injury.

REMOVE THE CONTROLS/DRIVE ENCLOSURE

Confirm that the power supply disconnect is open and all safety procedures are observed before removing the VFD. This procedure minimizes the number of sensors and cables that need to be disconnected.

⚠ WARNING

Do not attempt to remove the VFD without first closing the refrigerant isolation valves. Failure to do so during VFD removal will result in an uncontrolled refrigerant leak. A refrigerant leak can damage the unit as well as displace oxygen, causing asphyxiation.

- 1. For Q and R compressors, close the 2 filter drier isolation valves (Fig. 22) and the 2 VFD isolation valves. Isolate the refrigerant charge into the condenser to prevent a refrigerant leak if one of the motor terminals is accidentally damaged during VFD removal or installation. For Q and R compressors, evacuate the VFD coldplate through the Schrader valve (Fig. 22) on the VFD drain isolation valve.
- Remove the shipping bracket between the VFD and the compressor if it is still in place. See Fig. 23.
 NOTE: For seismic units, do not remove the shipping bracket.

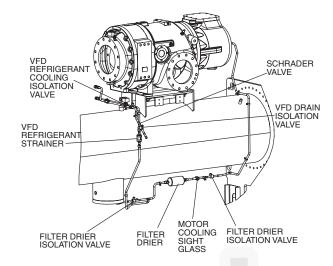


Fig. 22 — VFD Refrigerant Isolation Valves (Q,R Compressors Only)

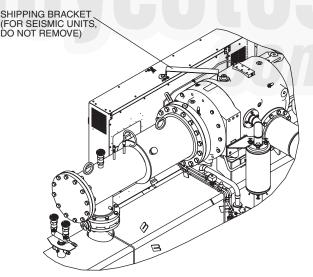


Fig. 23 — VFD Shipping Bracket (Unit with R Compressor Shown)

- 3. Remove any conduits that bring power to the VFD.
- 4. Remove the nuts that secure the terminal box transition piece to the motor housing.
- Disconnect the motor leads from the motor terminals (Fig. 24). Note the position of the motor terminal cable lugs so they can be reinstalled with sufficient clearance away from surrounding structure.

- 6. Remove the motor temperature sensor leads (Fig. 24), the motor ground lead, and the bolts that secure the VFD enclosure to the terminal box transition piece.
- Disconnect the communication cables from the back of ICVC (International Chiller Visual Controller) (Fig. 25).
- 8. Disconnect the high pressure switch leads. Consult the wiring diagrams in the section Make Electrical Connections (page 50) for terminal block and terminals (they are dependent on the drive type).
- 9. Unplug connectors CN1A, CN1B, CN2, and CN3 (Fig. 26 and 27).
- Disconnect the control panel ground wire located next to connectors CN1A and CN1B (see Fig. 26 for all compressors).
- 11. Disconnect the VFD cooling lines (Fig. 28) and cover all openings (does not apply to units with P compressors).
- Remove the 12 screws that secure the control panel to the VFD enclosure. Tilt the control panel away from the back of the control center.
- 13. Position the control panel on a safe surface and secure it in place to prevent damage.

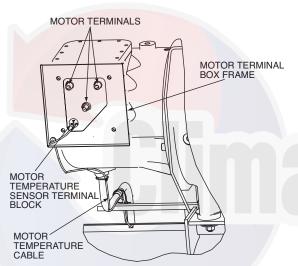


Fig. 24 — Motor Terminals (Units with Q,R Compressors Shown)

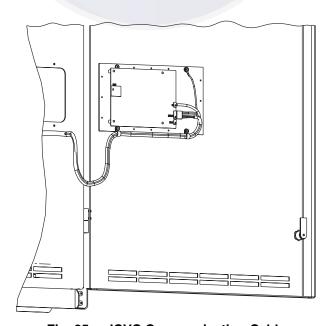


Fig. 25 — ICVC Communication Cables

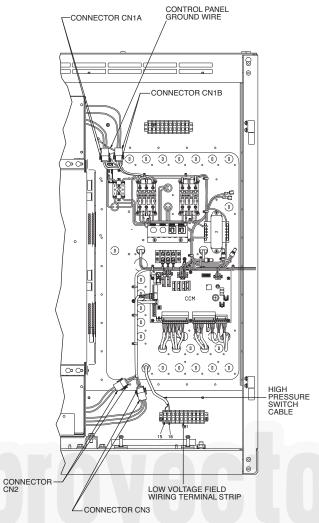


Fig. 26 — Control Panel Connectors (R,Q Units with LF-2 VFD)

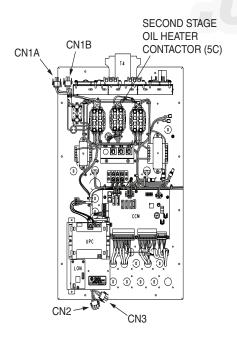
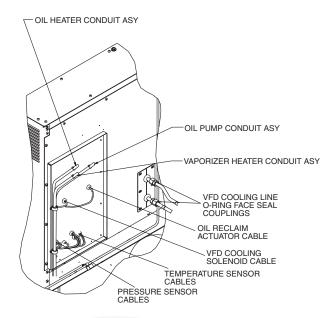



Fig. 27 — Control Panel Connectors (P Units)

NOTE: The P compressor uses drive without VFD cooling lines.

Fig. 28 — Control Panel Back

<u>Lifting the Control Center</u> — Care should be used to prevent damage due to dropping or jolting when moving the control center. A fork truck or similar means of lifting and transporting may be used. Sling in a manner that will equalize the load at the pickup points. Use a spreader bar if the angle of the sling is less than 45 degrees relative to horizontal. Do not jolt while lifting.

Use the following procedure to lift the control center.

- 1. Remove the rubber hole plugs in the top of the control center and fully thread in 4 eyebolts or swivel hoist rings (see Fig. 29). Lifting hardware must have ³/₄ in.-10 x 2 in. long threads and must have a working load limit of at least 6000 lb (2722 kg). Typical eyebolts are Chicago Hardware (size 28) or Grainger (P/N 5ZA63).
- Attach a sling to the 4 lifting eyebolts. Make certain that the angle of the sling is not less than 45 degrees relative to horizontal.
- 3. Using an overhead or portable hoist (minimum 2 ton rated capacity), attach a free-fall chain to the sling secured to the drive. Take up any slack in the chain.
- 4. Rig the control center and remove the bolts that secure it to the VFD mounting brackets on the condenser (see Fig. 29).
- 5. Confirm that welding procedures comply with local Pressure Vessel Codes before removing a portion of the VFD support bracket from the condenser. Custom brackets should be fabricated if part of the VFD supports must be cut off of the condenser to reduce the width of the condenser assembly. Clamp ¼-in. plates over both sides of the VFD bracket and drill 2 pairs of holes that straddle the line along which the VFD brackets will be cut. This will allow the VFD brackets to be reinstalled and welded in their original position.

NOTE: To reassemble, follow steps in reverse order. Connect sensors and cables after major components have been secured to reduce the risk damaging them. (See Fig. 30 and 31.)

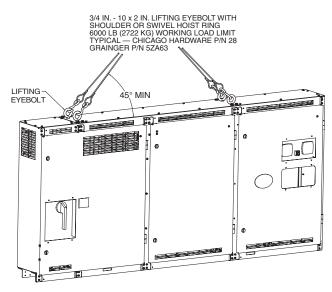


Fig. 29 — Control Center Lifting Points

REMOVE THE DISCHARGE PIPE ASSEMBLY FROM THE CONDENSER

NOTE: For steps 1 through 6 refer to Fig. 18 for units with Q, R compressor, or Fig. 19 for units with P compressor.

The condenser relief valve and relief valve vent piping should be removed if they will interfere with discharge pipe assembly rigging.

- 1. Remove the discharge pipe assembly relief valve and relief valve vent piping, if applicable.
- 2. Disconnect the compressor discharge temperature sensor.
- Disconnect the compressor discharge pressure sensor and remove the high discharge pressure switch.
- 4. Unbolt and rig the discharge pipe assembly off and remove the bolts from the compressor discharge and condenser inlet flange. Note the position and orientation of the discharge isolation valve on the condenser inlet flange.
- 5. Remove the discharge pipe assembly.
- 6. Cover all openings.

NOTE: To reassemble, follow steps in reverse order. Connect sensors and cables after major components have been secured to reduce the risk of damaging them.

SEPARATE THE COMPRESSOR

A CAUTION

Do not rig the heat exchanger before the control center and compressor are removed. The assembly has a high center of gravity and may tip over when lifted at the tubesheet rigging points, which could result in equipment damage and/ or serious personal injury.

The VFD blocks access to the compressor mounting bolts. It must be removed before the compressor can be separated from the condenser. Remove the VFD from the condenser using the Remove the Controls/Drive Enclosure section on page 27. Refer to Table 20.

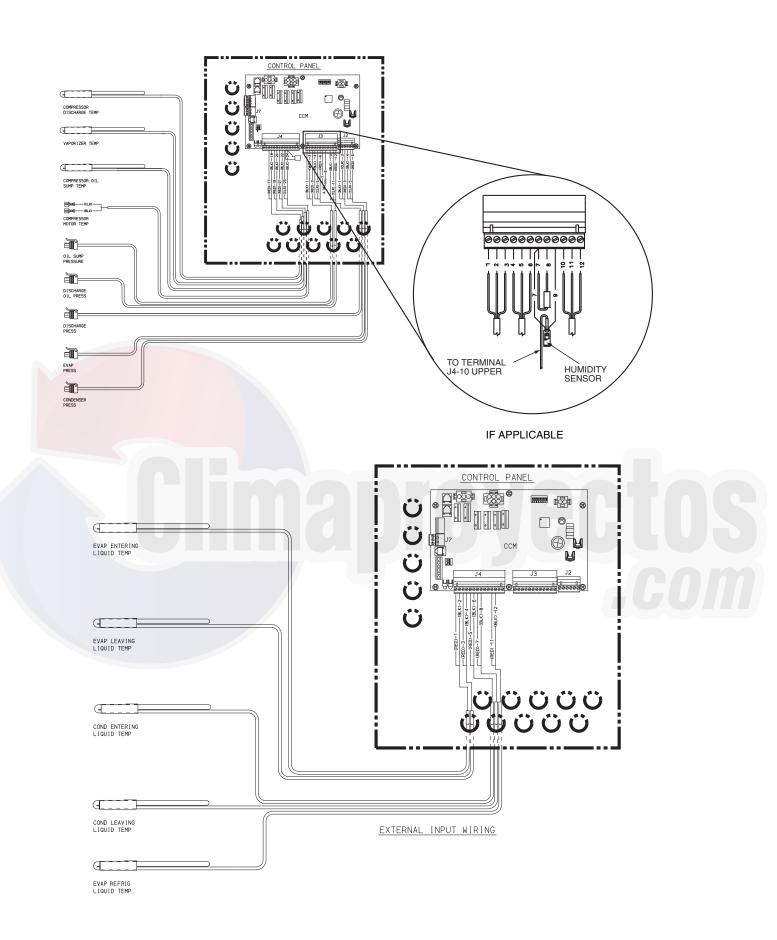


Fig. 30 — Control Panel Inputs (Q, R Compressors)

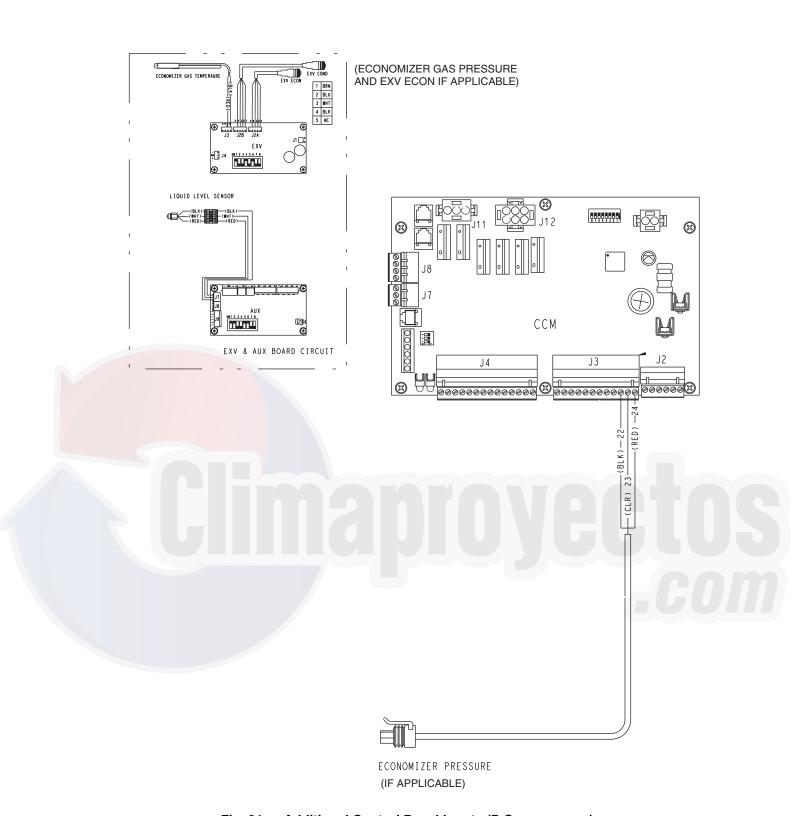


Fig. 31 — Additional Control Panel Inputs (P Compressors)

Table 20 — Compressor Fastener Identification

COMPRESSOR FA	STENERS	SIZE		
Discharge Pipe Assembly Discharge Flange	1 in8 Grade 5 Hex Head			
Suction Elbow to	Q and P Com- pressor	3/ ₄ in10 Grade 5 Hex Head		
Compressor Inlet	7/8 in9 Grade 5 Hex Head			
Compressor Mount to Cor	ndenser	3/ ₄ in10 Studs (A-449)		
Economizer Line		5/8 in11 Grade 8 Hex Head		
Motor Cooling, Motor Drai	n, Oil Drain	M12x1.75 Grade 10.9 Socket Head		
Compressor Lifting Points	M30x3.5 Threaded Holes			
Stator Housing Lifting Poin	M30x3.5 Threaded Hole			
Discharge Housing Lifting	M30x3.5 Threaded Hole			

1. Disconnect the oil supply line in 2 places (Fig. 32 or 33). Cap the oil lines and fittings.

NOTE: Compressor oil lines and fittings between the oil filter and compressor must be kept extremely clean to prevent obstruction of the compressor inlet bearing oil orifice. Cap all orifice lines and fittings during disassembly. The compressor inlet bearing oil orifice is located at the lubrication block on top of the compressor.

- 2. Disconnect the motor cooling inlet flange, the motor cooling drain flange, optional economizer vapor line flange, and bearing oil drain flange (Fig. 32 and Fig. 33). Remove the economizer muffler bracket.
- Brace the end of the discharge pipe assembly closest to the compressor if it has not already been removed. Place an oil pan under the compressor flange to collect oil that may have accumulated in the discharge pipe assembly. Unbolt

- the discharge pipe assembly from the compressor. It may also be necessary to loosen the bolts that attach the discharge pipe assembly to the condenser.
- 4. If the cooler has been removed (not applicable for P compressor), rig the suction elbow and unbolt the suction elbow at the compressor and vaporizer vent line flanges (see Fig. 18). If the cooler is still in place, it may be necessary to loosen the bolts that secure the suction elbow to the cooler.
- Carefully remove the perforated insulation cutouts that cover the compressor lifting points. See Fig. 32 and 33.
 Replace the lifting shackle thread protector after the compressor is re-installed to prevent insulation adhesive from fouling the threads.
- 6. Rig the compressor with lifting eyelets installed in the two M30 threaded holes provided in the top of the compressor housing (Fig. 32 and 33). Use only M30 forged eye bolts or M30 hoist rings with a sufficient working load limit to safely lift the compressor. The rubber vibration isolators may pull out of the compressor mounting bracket when the compressor is lifted off of the condenser. Applying leak detection soap solution to the outside of the vibration isolators will make it easier to press the isolators back into position.
- 7. Cover all openings.

NOTE: To reassemble, follow steps in reverse order. Connect sensors and cables after major components have been secure to reduce the risk damaging them.

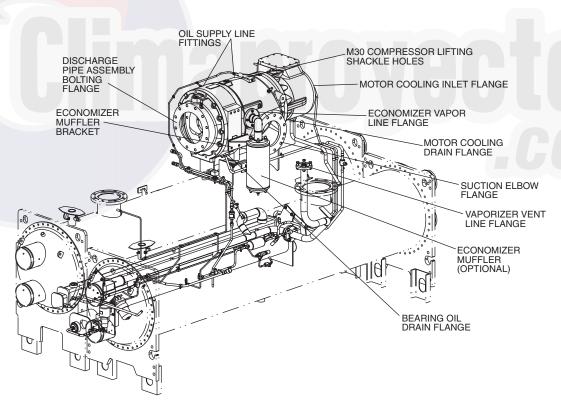


Fig. 32 — Compressor Removal, Q and R Compressors (Unit with R Compressor Shown)



Fig. 33 — Compressor Removal, P Compressor

SEPARATE THE VAPORIZER FROM THE CONDENSER — The VFD mounting brackets (Fig. 34 and 35) extend beyond the outboard edge of the tubesheet. The vaporizer extends beyond the perimeter of the condenser tubesheet.

- 1. Cut the vaporizer hot gas supply line near the oil concentrator (Fig. 34 and 35).
- 2. Cut the vaporizer hot gas return line (Fig. 36).
- 3. Cut the bearing oil drain line near the oil sump (Fig. 36).
- 4. Unbolt the vaporizer vent line flange shown in Fig. 36. (Cut for P compressor.)
- 5. Cut the oil supply line as shown in Fig. 36.
- 6. Cut the oil reclaim line as shown in Fig. 36.
- 7. Disconnect all wires and cable leads to the vaporizer assembly (see Fig. 37) including:
 - a. oil sump temperature sensor
 - b. oil sump pressure cable and oil pressure leaving filter cable
 - c. oil reclaim cable
 - d. vaporizer heater cable in the vaporizer heater junction box (Fig. 34 and 35)
 - e. oil pump cable
 - f. oil sump heater conduit from its junction box (Fig. 34 and 35)

- g. vaporizer temperature sensor (Fig. 34 and 35)
- 8. Rig the vaporizer with the lifting points on the vaporizer mounting bracket and remove the 4 bolts that secure it to the condenser (Fig. 34 and 35).
- 9. Cover all openings.

NOTE: To reassemble, follow steps in reverse order. Connect sensors and cables after major components have been secured to reduce the risk damaging them.

Step 4 — Install VFD

- 1. Install terminal box frame mounting studs into tapped holes using short threaded end (see section E-E in Fig. 38 and 39). Do not exceed 120 ft-lb (163 N-m).
- 2. Install thermal insulators, insulation frame assembly, and terminal box frame prior to attaching motor power cables.
- 3. Torque motor terminals to 45 to 55 ft-lb (61 to 75 N-m).
- 4. There may be 1 or 2 motor power cables per terminal identified as T1, T2 and T3. Position motor end lugs on terminal studs with Belleville washer located against the front terminal lug with the convex side facing toward the front terminal nut. Clinch the 2 cables together with wire ties before tightening terminal nuts. Install front terminal nut finger tight. Hold front terminal nut stationary while tightening rear terminal nut to 45 to 50 ft-lb (61 to 68 N-m). (See Fig. 40 and 41.)

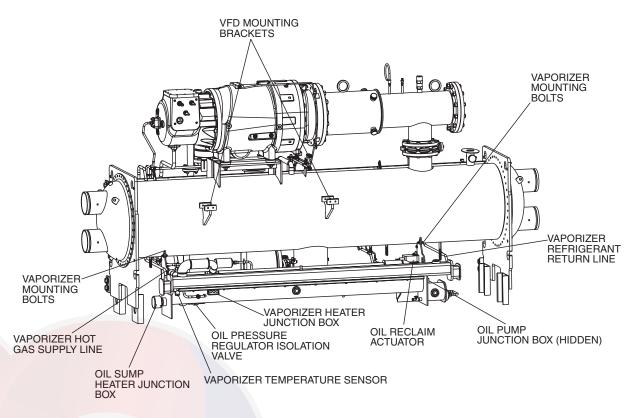


Fig. 34 — Oil Concentrator Removal, Q and R Compressors (Unit with R Compressor Shown)

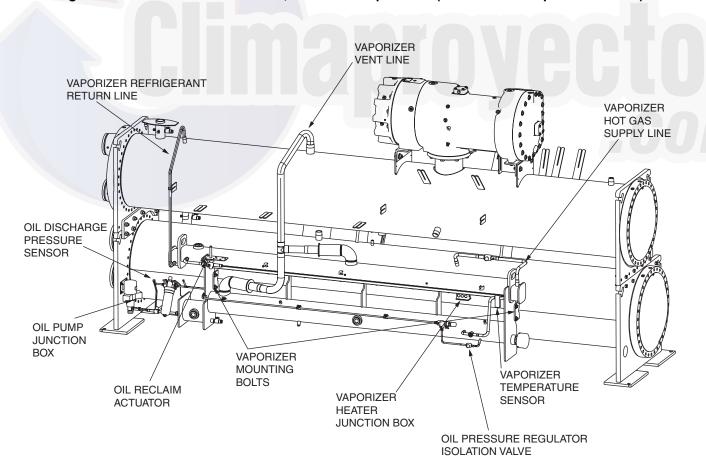


Fig. 35 — Oil Concentrator Removal, P Compressor

Fig. 36 — Oil Reclaim Piping (Unit with R Compressor Shown)

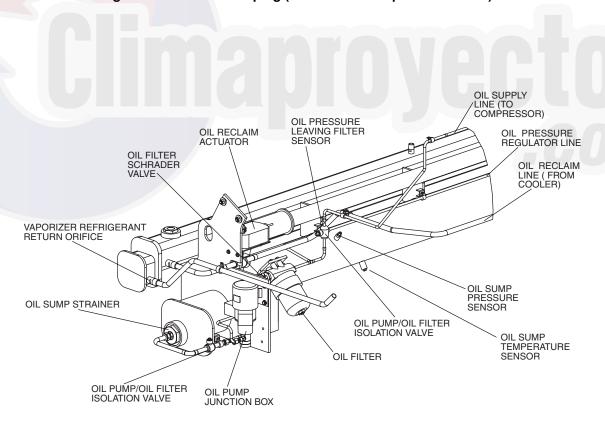


Fig. 37 — Oil Reclaim Components (Unit with R Compressor Shown)

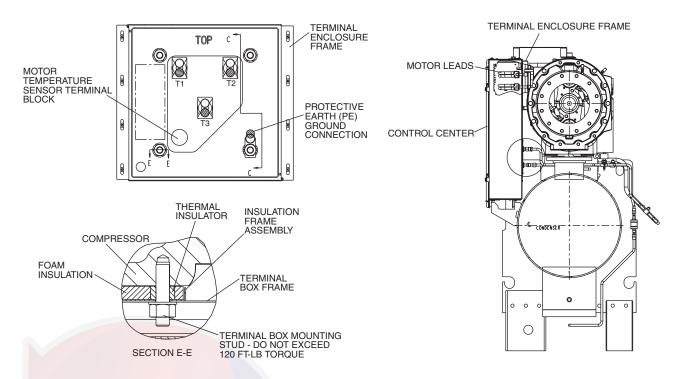


Fig. 38 — Motor Terminal Box (Q and R Compressors)

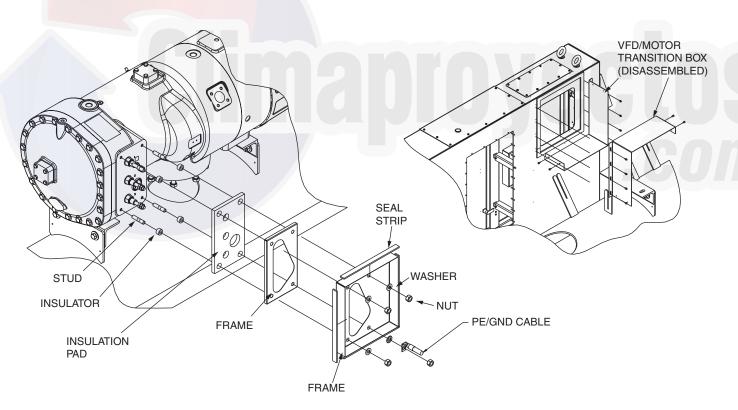


Fig. 39 — Motor Terminal Box (P Compressor)

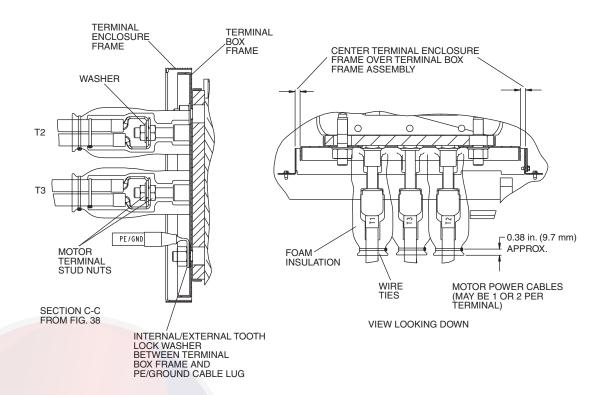


Fig. 40 — Motor Terminal Insulation (Q and R Compressors)

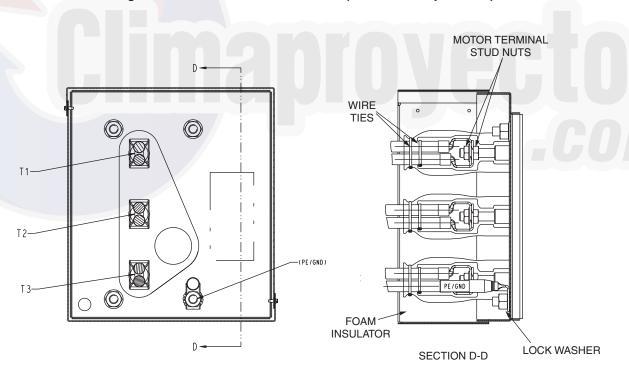


Fig. 41 — Motor Terminal Insulation (P Compressor)

5. Check all terminal connections for proper installation.

IMPORTANT: Do not insulate terminals until wiring arrangement has been checked and approved by Carrier start-up personnel. Motor terminals must be insulated in acceptance with national and local electrical codes.

Insulate Motor Terminals and Lead Wire Ends — Locate heat shrink tubing (RCD P/N LF33MM114) over power connections so that they are completely covered and tubing is against motor housing. Shrink into position. Slide foam tubing (3 in. inner diameter closed cell vinyl, neoprene, or nitrile foam) part way over the heat shrink tubing. Apply adhesive for closed cell foam insulation to motor side end of the foam tubing and push tubing the rest of the way over the terminal and against the sheet

insulation on the motor side. Secure the opposite end of the foam tubing with a wire tie as shown in Fig. 40 and 41

Alternate Insulation for Motor Terminals and Lead Wire Ends — Insulate compressor motor terminals, lead wire ends, and electrical wires to prevent moisture condensation and electrical arcing. Obtain Carrier approved insulation material from RCD (Replacement Components Division) consisting of 3 rolls of insulation putty and one roll of vinyl tape.

- a. Insulate each terminal by wrapping with one layer of insulation putty (RCD P/N 19EA411-1102).
- b. Overwrap putty with 4 layers of vinyl tape.
- Orient PE/ground lug as shown in Fig. 42. Assemble internal/external tooth lock washer between the terminal box frame and the PE/ground cable. Torque PE/ground lug nut to 55 to 65 ft-lb (75 to 89 N-m). See section H-H in Fig. 42 for PE/ground cable routing.
- 7. Center terminal enclosure frame over terminal box frame assembly so the space between the frames is equal within ³/₁₆-in. (5 mm) at the top and bottom. Use the slots in the terminal enclosure frame. Adjust spacing between the sides of the terminal enclosure frame and terminal box frame assemblies by moving the control center to the left or right.

- 8. Install O-rings on VFD refrigerant connections using silicone grease. Tighten connector using 2 wrenches to 27 to 33 ft-lb (37 to 45 N-m). (See Detail A in Fig. 43.) (Does not apply to units with P compressor.)
- Evacuate all piping between the VFD and the VFD isolation valves after assembly and tightening of VFD fittings.
 Dehydration/evacuation is complete to equalize VFD piping pressure with machine pressure if machine is charged with refrigerant (see Fig. 43). (Does not apply to units with P compressor.)

Step 5 — Install Machine Supports

IMPORTANT: Chiller housekeeping pad, anchor bolts and attachment points to be designed by others in accordance with all applicable national and local codes.

INSTALL STANDARD ISOLATION — Figures 44-47 and show the position of support plates and shear flex pads, which together form the standard machine support system.

Service clearance under the chiller can be enhanced if the grout is not extended along the entire length of the heat exchangers.

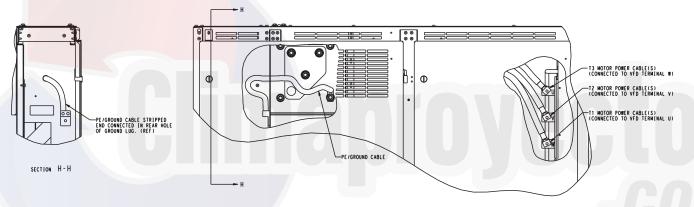
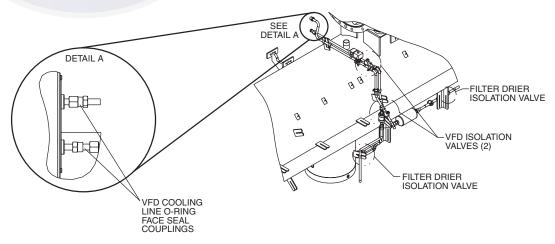
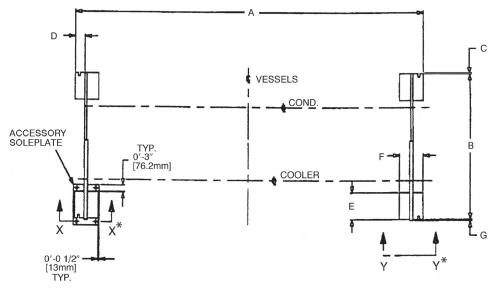
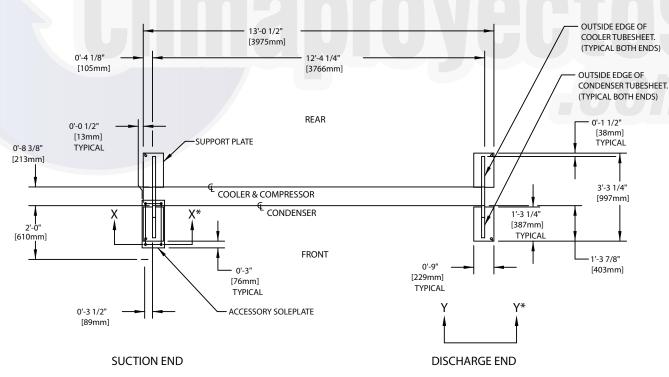




Fig. 42 — Motor Ground Cable

NOTE: Does not apply to VFD supplied with units with P compressors.


Fig. 43 — VFD Refrigerant Connectors

*See Fig. 47 or 48.

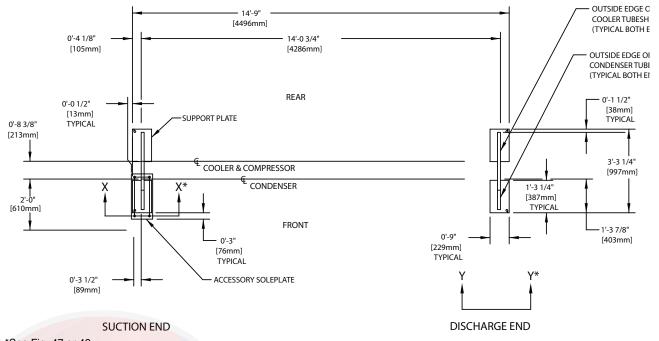

23XRV	DIMENSIONS (ft-in.)							
HEAT EXCHANGER SIZE	Α	В	С	D	E	F	G	
30-32	12-10 ³ / ₄	5-51/4	0	0-35/8	1-31/4	0-9	0-1/2	
35-37	14- 71/4	5-51/4	0	0-35/8	1-31/4	0-9	0-1/2	
40-42	12-10 ³ / ₄	6-0	0-11/2	0-35/8	1-31/4	0-9	0-1/2	
45-47	14- 71/4	6-0	0-11/2	0-35/8	1-31/4	0-9	0-1/2	
50-52	12-10 ³ / ₄	6-51/2	0-1/2	0-35/8	1-31/4	0-9	0-1/2	
55-57	14- 71/4	6-51/2	0-1/2	0-35/8	1-31/4	0-9	0-1/2	

Fig. 44 — 23XRV30-57 Machine Footprint

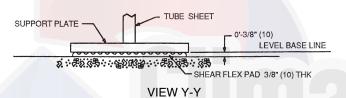

*See Fig. 47 or 48.

Fig. 45 — 23XRV Frame Size A Machine Footprint

*See Fig. 47 or 48.

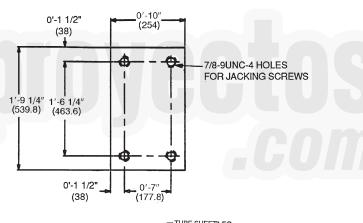
Fig. 46 — 23XRV Frame Size B Machine Footprint

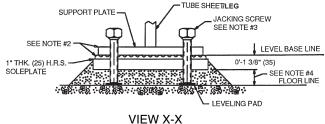
NOTES:

- Dimensions in () are in millimeters.
- 2. Isolation package includes 4 shear flex pads.

Fig. 47 — Standard Isolation

INSTALL ACCESSORY ISOLATION (IF REQUIRED) -Uneven floors or other considerations may dictate the use of accessory soleplates (supplied by Carrier for field installation) and leveling pads. Refer to Fig. 48.


Level machine by using jacking screws in isolation soleplates. Use a level at least 24-in. (610 mm) long.


IMPORTANT: Chiller support plates must be level within 1/2 in. from one end to the other end of the heat exchangers for effective oil reclaim system operation.

For adequate and long lasting machine support, proper grout selection and placement is essential. Carrier recommends that only pre-mixed, epoxy type, non-shrinking grout be used for machine installation. Follow manufacturer's instructions in applying

- Check machine location prints for required grout thickness.
- Carefully wax jacking screws for easy removal from grout.
- Grout must extend above the base of the soleplate and there must be no voids in grout beneath the plates.
- Allow grout to set and harden, per manufacturer's instructions, before starting machine.
- Remove jacking screws from leveling pads after grout has hardened.

ACCESSORY SOLEPLATE DETAIL

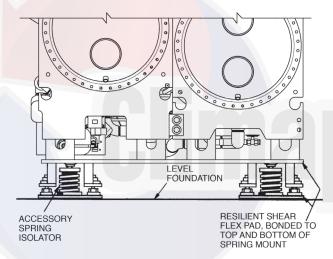
LEGEND

HRS - Hot Rolled Steel

- 1. Dimensions in () are in millimeters.
- Accessory (Carrier supplied, field installed) soleplate package includes 4 soleplates, 16 jacking screws and leveling pads.
- Jacking screws to be removed after grout has set.
- Thickness of grout will vary, depending on the amount necessary to level chiller. Use only pre-mixed non-shrinking Ceilcote 748 OR Chemrex Embeco 636 Plus Grout 0'-11/2"

(38.1) to 0'-21/4" (57) thick.

Fig. 48 — Accessory Isolation


INSTALL SPRING ISOLATION

IMPORTANT: Accessory spring isolation packages are intended solely for non-seismic applications. Seismic applications must be designed by a registered professional in accordance with all applicable national and local codes.

Spring isolation may be purchased as an accessory from Carrier for field installation. It may also be field supplied and installed. Spring isolators may be placed directly under machine support plates or located under machine soleplates. See Fig. 49. Consult job data for specific arrangement. Low profile spring isolation assemblies can be field supplied to keep the machine at a convenient working height.

Obtain specific details on spring mounting and machine weight distribution from job data. Also, check job data for methods to support and isolate pipes that are attached to spring isolated machines.

NOTE: These isolators are not intended for seismic duty, but are intended to reduce the vibration and noise levels transmitted from the chiller to the surrounding environment. For installations adjacent to areas that are sensitive to noise and/or vibration, use the services of a qualified consulting engineer or acoustics expert to determine whether these springs will provide adequate noise/vibration suppression.

NOTE: The accessory spring isolators are supplied by Carrier for installation in the field.

Fig. 49 — 23XRV Accessory Spring Isolation (Shown with Accessory Soleplates)

Step 6 — Connect Piping

IMPORTANT: Chiller water nozzle connections to be designed by others in accordance with all applicable national and local codes.

A CAUTION

Remove cooler and condenser liquid temperature and optional pressure sensors before welding connecting piping to water nozzles. Refer to Fig. 6-8. Replace sensors after welding is complete.

INSTALL WATER PIPING TO HEAT EXCHANGERS—Refer to Table 7 for nozzle sizes. Install piping using job data, piping drawings, and procedures outlined below. A typical piping installation is shown in Fig. 50.

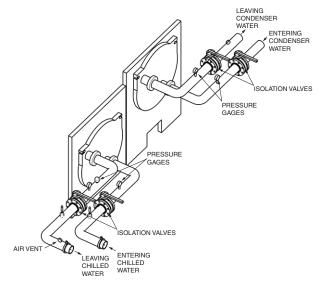
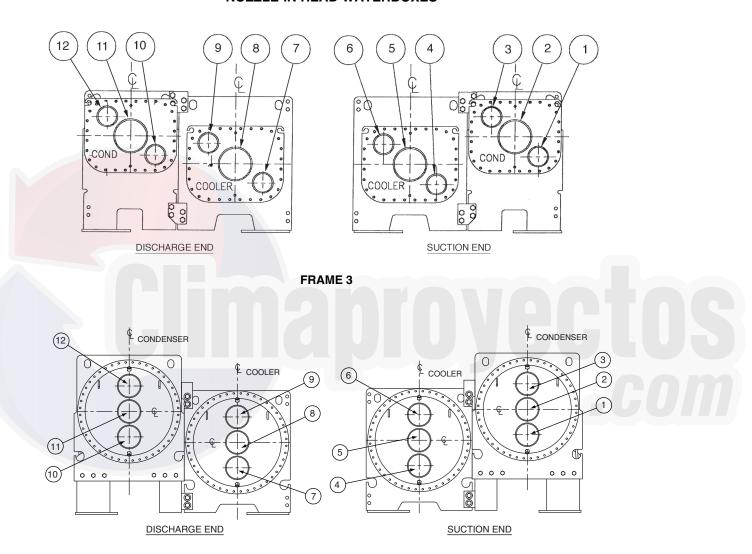


Fig. 50 — Typical Nozzle Piping

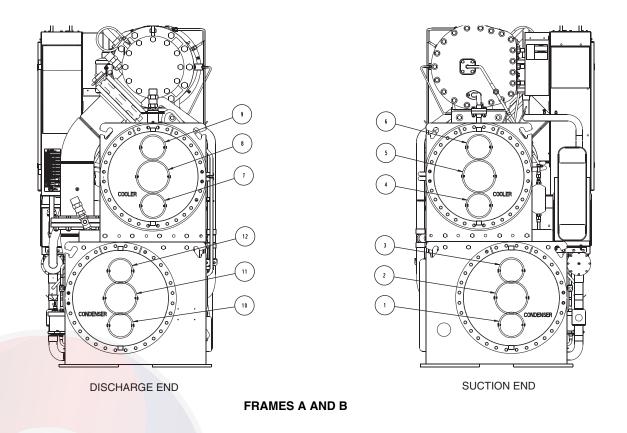
A CAUTION


Factory-supplied insulation is not flammable but can be damaged by welding sparks and open flame. Protect insulation with a wet canvas cover.

- Offset pipe flanges to permit removal of waterbox cover for maintenance and to provide clearance for pipe cleaning. No flanges are necessary with marine waterbox option; however, water piping should not cross in front of the waterbox cover or access will be blocked.
- 2. Provide openings in water piping for required pressure gages and thermometers. For thorough mixing and temperature stabilization, wells in the leaving water pipe should extend inside pipe at least 2 in. (51 mm).
- 3. Install air vents at all high points in piping to remove air and prevent water hammer.
- 4. Install pipe hangers where needed. Make sure no weight or stress is placed on waterbox nozzles or flanges.
- Water flow direction must be as specified in Fig. 51-53.
 NOTE: Entering water is always the lower of the 2 nozzles.
 Leaving water is always the upper nozzle for cooler or condenser.
- 6. Install waterbox vent and drain piping in accordance with individual job data. All connections are ³/₄-in. FPT.
- Install waterbox drain plugs in the unused waterbox drains and vent openings.
- 8. Install optional pumpout system or pumpout system and storage tank as shown in Fig. 54-58.
- Isolation valves are recommended on the cooler and condenser piping to each chiller for service.
- 10. Apply appropriate torque on the retaining bolts in a crisscross pattern for the waterbox covers before insulating the waterbox cover. The gasket can relax during transportation and storage, and the waterbox cover requires retightening of the bolts.

⚠ CAUTION

Never charge liquid R-134a refrigerant into the chiller if the pressure is less than 35 psig (241 kPa). Charge as a gas only, with the cooler and condenser pumps running, until 35 psig (241 kPa) is reached using the pumpdown mode on the ICVC. Terminate the pumpdown mode using the ICVC. Flashing of liquid refrigerant at low pressures can cause tube freeze-up and considerable damage.

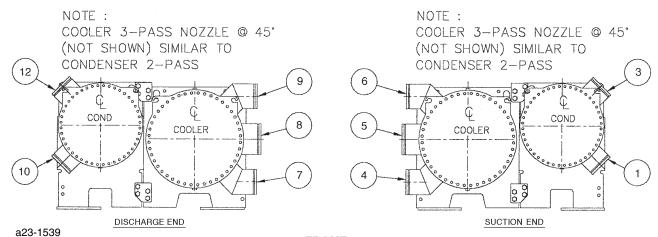

NOZZLE-IN HEAD WATERBOXES

FRAMES 4 AND 5

NOTE: See next page for nozzle arrangement codes.

Fig. 51 — Piping Flow Data (NIH, Frames 3 Through 5 and A,B)

NOZZLE ARRANGEMENT CODES FOR ALL 23XRV NOZZLE-IN-HEAD WATERBOXES


	COOLER WATERBOXES				
PASS	IN	OUT	ARRANGEMENT CODE*		
	8	5	Α		
	5	8	В		
2	7	9	С		
	4	6	D		
2	7	6	E		
3	4	9	F		

	CONDENSER WATERBOXES					
PASS	IN	OUT	ARRANGEMENT CODE*			
	11	2	Р			
	2	11	Q			
2	10	12	R			
	1	3	S			
3	10	3	T			
<u> </u>	1	12	U			

Fig. 51 — Piping Flow Data (NIH, Frames 3 Through 5 and A,B) (cont)

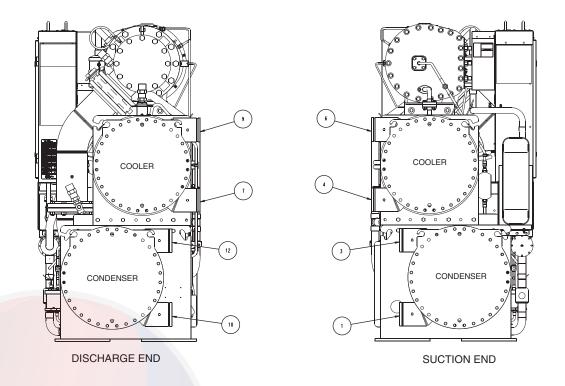
^{*}Refer to certified drawings.

MARINE WATERBOXES

FRAME 3

NOZZLE ARRANGEMENT CODES

		COOLE	RWATERBOXES	CONDENSER WATERBOXES			
PASS	IN	OUT	ARRANGEMENT CODE	IN	OUT	ARRANGEMENT CODE	
1	8	5	Α	_	_	_	
	5	8	В	_			
	7	9	С	10	12	R	
2	4	6	D	1	3	S	
2	7	6	E	_			
3	4	9	F	_	_	_	

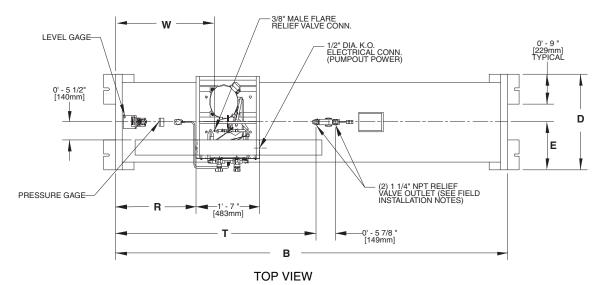

MARINE WATERBOXES 12 9 6 CUIND CUIDLER TO SUCTION END

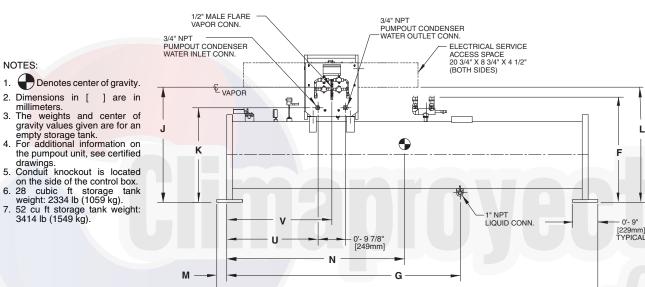
FRAMES 4 AND 5

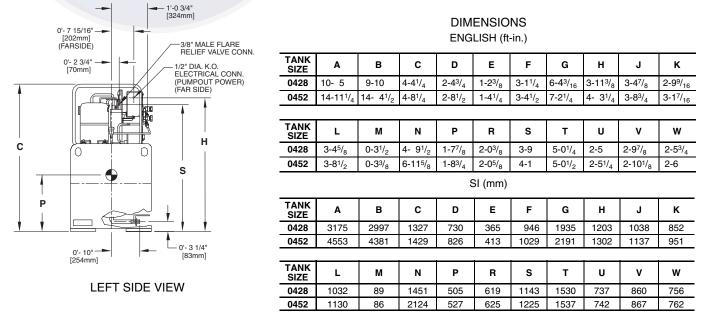
NOZZLE ARRANGEMENT CODES

		COOLER	WATERBOXES	CONDENSER WATERBOXES			
PASS	IN	OUT ARRANGEMENT CODE		IN	OUT	ARRANGEMENT CODE	
-	9	6	Α	_	_	_	
ı	6	9	В	_	_	_	
	7	9	С	10	12	R	
2	4	6	D	1	3	S	
2	7	6	Е	_	_	_	
	4	9	F	_	_		

Fig. 52 — Piping Flow Data (Marine Waterboxes, Frames 3 Through 5)




NOZZLE ARRANGEMENT CODES


	COOLER WATERBOXES					
PASS	IN	OUT	ARRANGEMENT CODE			
	9	6	A			
'	6	9	В			
2	7	9	С			
2	4	6	D			
	7	6	E			
3	4	9	F			

	CONDENSER WATERBOXES					
PASS	IN OUT		ARRANGEMENT CODE			
		-				
		4				
	10	12	R			
2	1	3	S			
3	1		_			
	_	_				

Fig. 53 — Piping Flow Data (Marine Waterboxes, Frames A and B)

FRONT VIEW

Fig. 54 — Optional Pumpout Unit and Storage Tank

RATED DRY WEIGHT AND REFRIGERANT CAPACITY

TANK SIZE	TANI	K OD	DRY W	EIGHT*	R-134A MAXIMUM REFRIGERANT CAPACITY (ANSI/ASHRAE 15)		R-134A MAXIMUM REFRIGERANT CAPACITY (UL 1963)	
	in.	mm	lb	kg	lb	kg	lb	kg
0428	24.00	610	2334	1059	1860	844	1716	778
0452	27.25	692	3414	1549	3563	1616	3286	1491

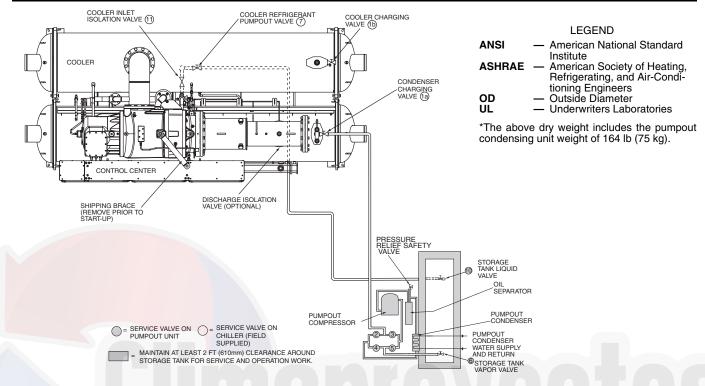


Fig. 55 — Optional Pumpout System Piping Schematic with Storage Tank — Configured to Push Liquid Into Storage Tank (Unit with R Compressor Shown)

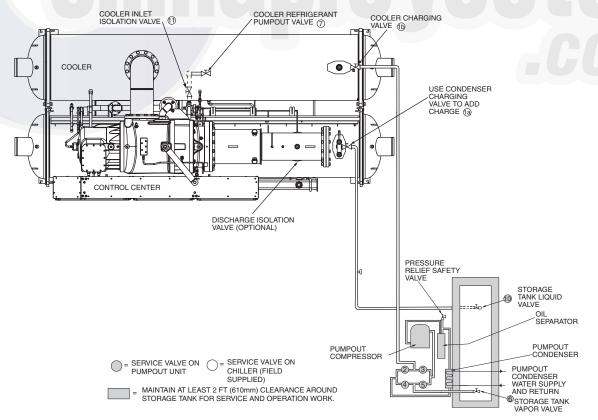


Fig. 56 — Optional Pumpout System Piping Schematic with Storage Tank — Configured to Pull Vapor Out of Chiller or to Charge Chiller from Storage Tank (Unit with R Compressor Shown)

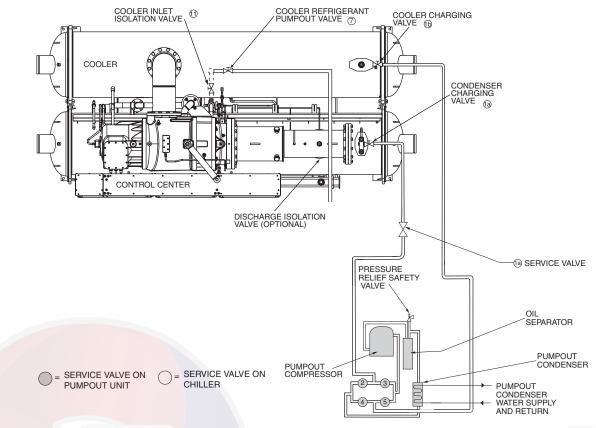
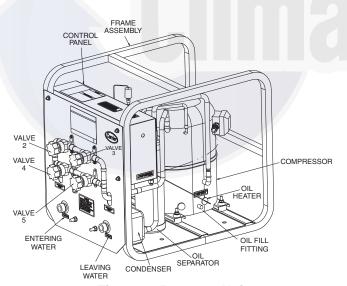
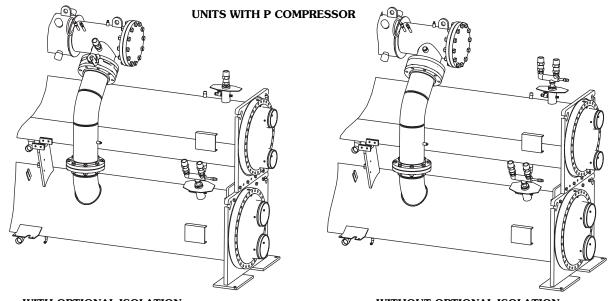


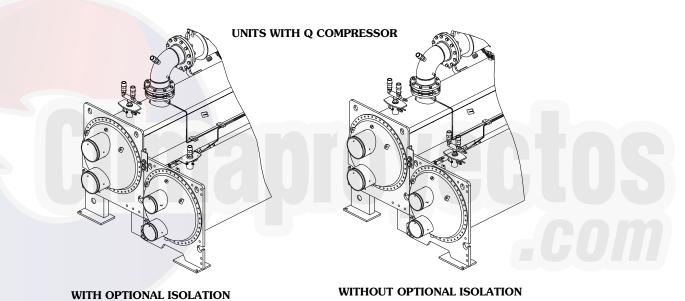
Fig. 57 — Optional Pumpout System Piping Schematic without Storage Tank — Configured to Store Refrigerant in Cooler or Condenser (Unit with R Compressor Shown)




Fig. 58 — Pumpout Unit

INSTALL VENT PIPING TO RELIEF VALVES — The 23XRV chiller is factory equipped with relief valves on the cooler and condenser shells. Refer to Fig. 59 and Table 21 for size and location of relief devices. Vent relief devices to the outdoors in accordance with ANSI/ASHRAE 15 (latest edition) Safety Code for Mechanical Refrigeration and all other applicable codes.

↑ DANGER


Refrigerant discharged into confined spaces can displace oxygen and cause asphyxiation.

- Dual pressure relief valves are mounted on the 3-way valves in some locations to allow testing and repair without transferring the refrigerant charge. Three-way valve shafts should be turned either fully clockwise or fully counterclockwise so only one relief valve is exposed to refrigerant pressure at a time.
 - The flow area of discharge piping routed from more than one relief valve, or more than one heat exchanger, must be greater than the sum of the outlet areas of all relief valves that are expected to discharge simultaneously. All relief valves within a machinery room that are exposed to refrigerant may discharge simultaneously in the event of a fire. Discharge piping should lead to the point of final release as directly as possible with consideration of pressure drop in all sections downstream of the relief valves.
- Provide a pipe plug near outlet side of each relief device for leak testing. Provide pipe fittings that allow vent piping to be disconnected periodically for inspection of valve mechanism.
- Piping to relief devices must not apply stress to the device. Adequately support piping. A length of flexible tubing or piping near the relief device is essential on spring-isolated machines.
- Cover the outdoor vent with a rain cap and place a condensation drain at the low point in the vent piping to prevent water build-up on the atmospheric side of the relief device.

WITH OPTIONAL ISOLATION

UNITS WITH R COMPRESSOR

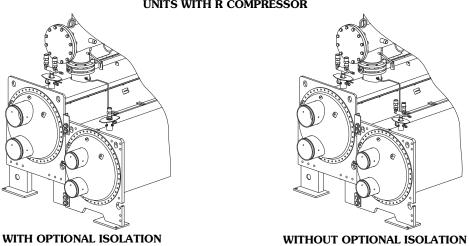


Fig. 59 — Relief Valve Arrangements

Table 21 — Relief Valve Locations

LOCATION	FRAME SIZE	RELIEF VALVE OUTLET SIZE	QUANTITY WITHOUT ISOLATION VALVES	QUANTITY WITH ISOLATION VALVES
DISCHARGE PIPE	3-5	11/4-in. NPT FEMALE CONNECTOR	1	1
ASSEMBLY	A,B	11/4-in. NPT FEMALE CONNECTOR	N/A	1
COOLER	3-5, A,B	11/4-in. NPT FEMALE CONNECTOR	2	1
CONDENSER	3-5, A,B	11/4-in. NPT FEMALE CONNECTOR	2	2
OPTIONAL STORAGE TANK	N/A	11/4-in. NPT FEMALE CONNECTOR	2	2

NOTE: All valves relieve at 185 psig (1275 kPa).

Step 7 — **Make Electrical Connections** — Field wiring must be installed in accordance with job wiring diagrams and all applicable electrical codes. Refer to Fig. 60-62 for typical wiring and component layout.

A DANGER

Only qualified electrical personnel familiar with the construction and operation of this equipment and the hazards involved should install, adjust, operate, or service this equipment. Read and understand this manual and other applicable manuals in their entirety before proceeding. Failure to observe this precaution could result in severe bodily injury or loss of life.

MARNING

DC bus capacitors in the VFD retain hazardous voltages after input power has been disconnected. After disconnecting input power, wait 5 minutes for the DC bus capacitors to discharge then check both the VFD DPI communications interface board status LEDs and the VFD with a voltmeter to ensure the DC bus capacitors are discharged before touching any internal components. Failure to observe this precaution could result in severe bodily injury or loss of life.

⚠ DANGER

The drive can operate at and maintain zero speed. The user is responsible for assuring safe conditions for operating personnel by providing suitable guards, audible or visual alarms, or other devices to indicate that the drive is operating or may operate at or near zero speed. Failure to observe this precaution could result in severe bodily injury or loss of life.

A DANGER

Do not install modification kits with power applied to the drive. Disconnect and lockout incoming power before attempting such installation or removal. Failure to observe this precaution could result in severe bodily injury or loss of life.

A DANGER

The drive contains ESD (Electrostatic Discharge) sensitive parts and assemblies. Static control precautions are required when installing, testing, servicing, or repairing the drive. Erratic machine operation and damage to, or destruction of, equipment can result if this procedure is not followed. Failure to observe this precaution could result in bodily injury.

ACAUTION

The user is responsible for conforming with all applicable local, national and international codes. Failure to observe this precaution could result in damage to, or destruction of, the equipment.

These instructions are intended for qualified electrical personnel familiar with servicing and installing AC drives. Any questions or problems with the products described in this manual should be directed to your local Carrier Service Office.

Wiring diagrams in this publication are for reference only and are not intended for use during actual installation; follow job specific wiring diagrams.

A CAUTION

Do not attempt to start compressor (even for a rotation check) or apply test voltage of any kind while machine is under dehydration vacuum. Motor insulation breakdown and serious damage may result.

A CAUTION

Low oil level may result if the oil pump is manually operated for more than a few minutes when the chiller is not running. The oil reclaim system does not return oil to the sump when the compressor is de-energized.

GROUNDING THE CONTROLS/DRIVE ENCLOSURE — Use the following steps to ground the drive.

- 1. Open the left door of the control center.
- 2. Run a suitable equipment grounding conductor unbroken from the drive to earth ground. Tighten these grounding connections to the proper torque. See Fig. 10, 11 and 42.
- 3. Close the door to the control center.

INSTALLING INPUT POWER WIRING — All wiring should be installed in conformance with the applicable local, national, and international codes (e.g., NEC/CEC). Signal wiring, control wiring, and power wiring must be routed in separate conduits to prevent interference with the drive operation. Use grommets, when hubs are not provided, to guard against wire chafing.

Use the following steps to connect AC input power to the main input circuit breaker:

- 1. Turn off, lock out, and tag the input power to the drive.
- 2. Remove the input power wiring panel above the VFD circuit breaker and drill the number of openings for the AC input leads (refer to Fig. 10 and 11). Mount all conduit hardware on the input power wiring panel before reinstalling the input power wiring panel on the VFD enclosure. Take care that metal chips and hardware do not enter the enclosure.

3. Wire the AC input leads by routing them through the openings in the input power wiring panel.

⚠ CAUTION

Do not route signal and control wiring with power wiring in the same conduit. This can cause interference with control and drive operation. Failure to observe this precaution could result in damage to, or destruction of, the equipment.

- 4. Connect the 3-phase AC input power leads (per job specifications) to the appropriate input terminals of the circuit breaker. See Fig. 10 and 11.
- 5. Tighten the AC input power terminals and lugs to the proper torque as specified on the input circuit breaker.

ITEM	DESCRIPTION					
	UNIT MOUNTED VFD WITH SHUNT TRIP CIRCUIT BREAKER (65K AMPS INTERRUPT/SHORT CIRCUIT)					
	UNIT MOUNTED VFD WITH SHUNT TRIP CIRCUIT BREAKER (100K AMPS INTERRUPT/SHORT CIRCUIT)					
	INCLUDES:					
1	(1) N.O. CHILLED WATER PUMP CONTACT OUTPUT (1) N.O. CONDENSER WATER PUMP CONTACT OUTPUT (1) N.O. TOWER FAN LOW / #1 CONTACT OUTPUT (1) N.O. TOWER FAN HIGH / #2 CONTACT OUTPUT (1) N.O. ALARM CONTACT OUTPUT (1) 4-20mA HEAD PRESSURE REFERENCE OUTPUT (1) N.C. SPARE SAFETY (DRY) CONTACT INPUT (1) N.O. REMOTE START (DRY) CONTACT INPUT (1) N.O. ICE BUILD (DRY) CONTACT INPUT					
1 _	3 PHASE UNDER / OVER VOLTAGE PROTECTION (LINE SIDE)					
Z.	PHASE LOSS / IMBALANCE / REVERSAL PROTECTION (LINE SIDE)					
PROTECTION	FREQUENCY SHIFT PROTECTION (LINE SIDE)					
8	OVER CURRENT PROTECTION (LINE AND LOAD SIDE)					
	PHASE TO GROUND FAULT PROTECTION (LINE AND LOAD SIDE)					
	3 PHASE AMPS (CHILLER DISPLAY LINE AND LOAD SIDE)					
	3 PHASE VOLTS (CHILLER DISPLAY LINE SIDE)					
METERING	4-20mA KW TRANSDUCER OUTPUT (LINE SIDE) FROM CHILLER CONTROL MODULE (CCM)					
M	KW HOURS / DEMAND KW (CHILLER DISPLAY LINE SIDE) KW METERING (CHILLER DISPLAY LINE AND LOAD SIDE) CONTROL POWER TRANSFORMER (3KVA)					
ARY						
ANCILLARY	CONTROLS AND OIL HEATER DISCONNECT					
	3 PHASE ANALOG VOLTS / AMPS METER PACKAGE (OPTION)					
	CE - MARKING (OPTION)					
2	SYSTEM FEEDER (SHORT CIRCUIT, GROUND FAULT & PROTECTION)					
Α	EVAPORATOR LIQUID PUMP STARTER DISCONNECT					
В	EVAPORATOR LIQUID PUMP MOTOR STARTER					
С	CONDENSER LIQUID PUMP STARTER DISCONNECT					
D	CONDENSER LIQUID PUMP MOTOR STARTER					
Е	COOLING TOWER FAN STARTER DISCONNECT (LOW FAN/#1)					
F	COOLING TOWER FAN STARTER (LOW FAN/#1)					
G	COOLING TOWER FAN STARTER DISCONNECT (HIGH FAN/#2)					
Н	COOLING TOWER FAN STARTER (HIGH FAN/#2)					
J	SPARE SAFETY DEVICES [N.C.] SEE NOTE 3.1					
K	REMOTE START / STOP DEVICE [N.O.] SEE NOTE 3.1					
L	REMOTE ALARM SEE NOTE 3.3					
М	REMOTE ANNUNCIATOR SEE NOTE 3.3					
N	LINE SIDE LUG ADAPTERS SEE NOTE 2.3					
Р	ICE BUILD START / TERMINATE DEVICE SEE NOTE 3.1					

NOTE: See Notes for Fig. 60 on page 54.

Fig. 60 — Typical Field Wiring Schematic (LF-2 VFD Shown)

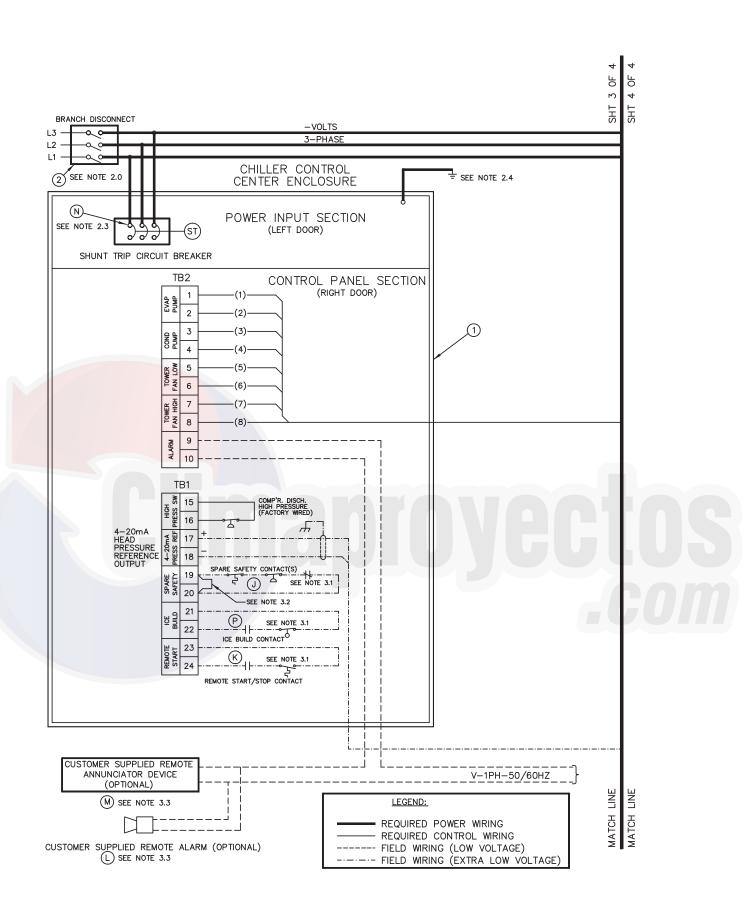


Fig. 60 — Typical Field Wiring Schematic (LF-2 VFD Shown) (cont)

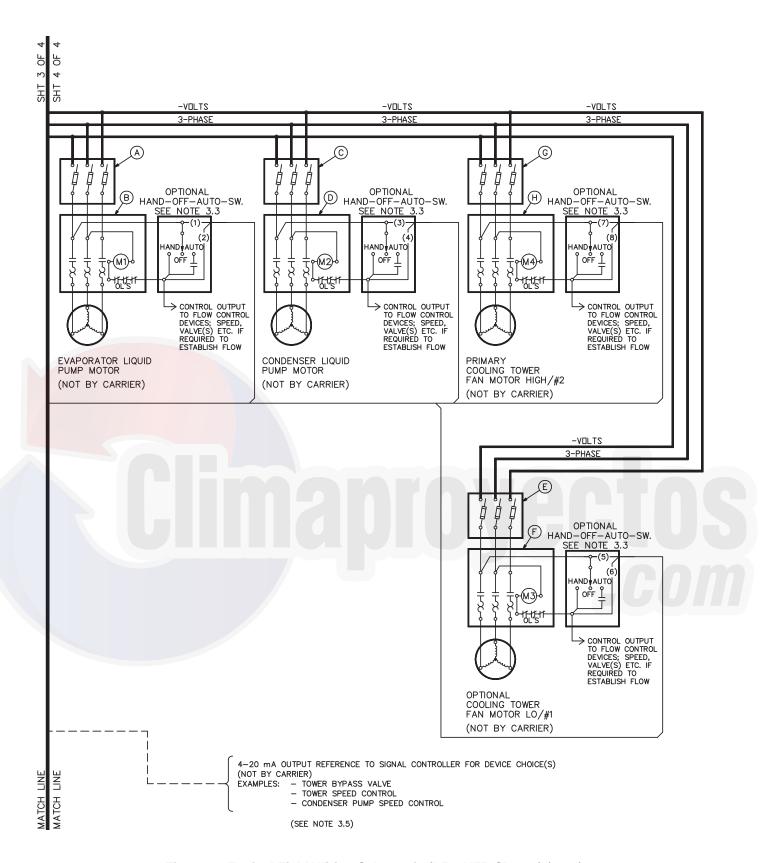


Fig. 60 — Typical Field Wiring Schematic (LF-2 VFD Shown) (cont)

NOTES FOR FIG. 60

GENERAL

- 1.0 Variable frequency drive (VFD) shall be designed and manufactured in accordance with Carrier engineering requirements
- 1.1 All field-supplied conductors, devices and the field-installation wiring, termination of conductors and devices, must be in compliance with all applicable codes and job specifications.
- 1.2 The routing of field-installed conduit and conductors and the location of field-installed devices, must not interfere with equipment access or the reading, adjusting or servicing of any component.
- 1.3 Equipment installation and all starting and control devices, must comply with details in equipment submittal drawings and literature.
- 1.4 Contacts and switches are shown in the position they would assume with the circuit de-energized and the chiller shutdown.

ACAUTION

Do not use aluminum conductors. Contractor/installer assumes all liability resulting from the use of aluminum conductors within the VFD enclosure.

POWER WIRING TO VFD

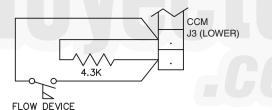
- 2.0 Provide a means of disconnecting branch feeder power to VFD. Provide short circuit protection and interrupt capacity for branch feeder in compliance with all applicable codes.
- 2.1 If metal conduit is used for the power wires, the last 4 feet or greater should be flexible to avoid transmitting unit vibration into the power lines and to aid in serviceability.
- 2.2 Line side power conductor rating must meet VFD nameplate voltage and chiller minimum circuit ampacity.
- 2.3 Lug adapters may be required if installation conditions dictate that conductors be sized beyond the minimum ampacity required. Circuit breaker lugs will accommodate the quantity (#) and size cables (per phase) as follows:

VFD MAX INPUT	STANDAR LUG CA (PER P	PACITY	OPTIONAL 100K AIC LUG CAPACITY (PER PHASE)		
AMPS	NO. OF CONDUCTORS	CONDUCTOR RANGE	NO. OF CONDUCTORS	CONDUCTOR RANGE	
225A	3	2/0 — 400MCM	2	2/0 — 400MCM	
335A	3	2/0 — 400MCM	2	2/0 — 400MCM	
440A	3	2/0 — 400MCM	2	2/0 — 400MCM	
520A	3	2/0 — 400MCM	3	2/0 — 400MCM	
608A	3	2/0 — 400MCM	3	2/0 — 400MCM	

NOTE: If larger lugs are required, they can be purchased from the manufacturer of the circuit breaker.

2.4 Compressor motor and controls must be grounded by using equipment grounding lug provided inside unit mounted VFD enclosure.

CONTROL WIRING


- 3.0 Field-supplied control conductors to be at least 18 AWG (American Wire Gage) or larger.
- 3.1 Ice build start/terminate device contacts, remote start/stop device contacts and spare safety device contacts, (devices not supplied by Carrier), must have 24 VAC rating. Max current is 60 mA, nominal current is 10 mA. Switches with gold plated bifurcated contacts are recommended.
- 3.2 Remove jumper wire between TB1-19 and TB1-20 before connecting auxiliary safeties between these terminals.
- 3.3 Each integrated contact output can control loads (VA) for evaporator pump, condenser pump, tower fan low, tower fan high, and alarm annunciator devices rated 5 amps at 115 VAC and up to 3 amps at 277 VAC.

⚠ CAUTION

Control wiring required for Carrier to start pumps and tower fan motors and establish flows must be provided to assure machine protection. If primary pump, tower fan and flow control is by other means, also provide a parallel means for control by Carrier. Failure to do so could result in machine freeze-up or overpressure.

Do not use control transformers in the control center as the power source for external or field-supplied contactor coils, actuator motors or any other loads.

- 3.4 Do not route control wiring carrying 30 V or less within a conduit or tray which has wires carrying 50 V or higher or along side wires carrying 50 V or higher.
- 3.5 Spare 4-20 mA output signal is designed for controllers with a non-grounded 4-20 mA input signal and a maximum input impedance of 500 ohms.
- 3.6 Flow devices to confirm evaporator or condenser pump flow are not required. However; if flow devices are used, wire as shown on drawing 23XRC1-1 (J3 lower). Remove jumper installed at these terminals and wire in a 4.3 K resistor in its place.

The flow device and resistor must be installed in parallel at these terminals such that the resistor provides a signal when the flow device is open.

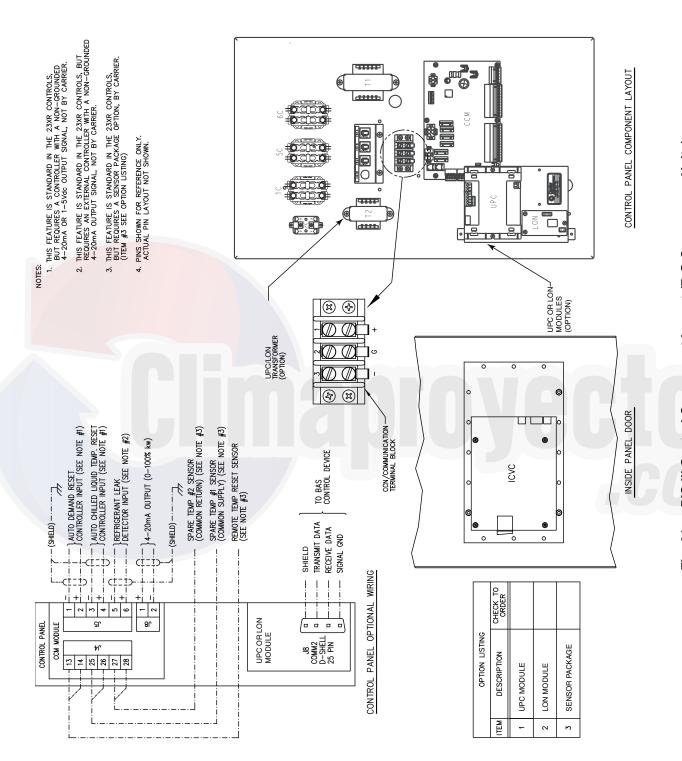


Fig. 61 — PIC III Control Component Layout (R,Q Compressor Units)

Fig. 62 — PIC III Control Component Layout (P Compressor Units)

WIRING THE FIELD WIRING TERMINAL STRIPS FOR LF-2 VFD — This section describes how to wire the field wiring terminal strips shown in Fig. 63-68. The control terminal blocks are mounted to the inside of the enclosure, above and below the control panel.

NOTE: Up to 30 v may be measured across open contact terminals on the hazardous voltage terminal strip.

- Turn off, lock out, and tag the input power to the drive. Wait 5 minutes.
- 2. Verify that there is no voltage at the input terminals (L1, L2, and L3) of the power module.
- 3. Verify that the status LEDs on the communications interface board are not lit. See Fig. 69. The location of the communications interface board is shown in Fig. 10.
- 4. Use a screwdriver to remove conduit twist outs in the control panel. Do not punch holes or drill into the top surface of the control center enclosure for field wiring. Knockouts are provided in the back of the control center for field wiring connections.
- 5. Connect the control wiring as shown in Fig. 61. Tighten all connections to 7 to 9 in.-lb.

WIRING THE FIELD WIRING TERMINAL STRIPS FOR STD TIER VFD — This section describes how to wire the field wiring terminal strips shown in Fig. 65-67. The control terminal blocks are mounted to the inside of the enclosure, on the right side.

NOTE: Up to 30 v may be measured across open contact terminals on the voltage terminal strip.

- Turn off, lock out, and tag the input power to the drive. Wait 5 minutes.
- 2. Verify that there is no voltage at the input terminals (L1, L2, and L3) of the power module.

- 3. Verify that the keypad and drive status indicators (Fig. 69) are not lit. The location of the drive status indicator is shown in Fig. 11.
- 4. Mount incoming wiring using the knockouts on the panel. Do not drill holes into the top side of the enclosure.
- 5. Connect the control wiring as shown in Fig. 67. Tighten all connections to 7 to 9 in.-lb.

CONNECT CONTROL INPUTS — Wiring may be specified for a spare safety switch, and a remote start/stop contact can be wired to the starter terminal strip. Additional spare sensors and Carrier Comfort Network® modules may be specified as well. These are wired to the machine control panel as indicated in Fig. 70.

CONNECT CONTROL OUTPUTS — Connect auxiliary equipment, chilled and condenser water pumps, and spare alarms as required and indicated on job wiring drawings.

CONNECT STARTER — The 23XRV chiller is equipped with a unit-mounted VFD starter (Fig. 71).

IMPORTANT: Be sure to ground the power circuit in accordance with the National Electrical Code (NEC), applicable local codes, and job wiring diagrams. Also, make sure correct phasing is observed for proper rotation.

A CAUTION

Do not punch holes or drill into the top surface of the control center, as unit damage could occur. Knockouts are provided in the back of the control center for wiring connections.

Remove the VFD shipping bracket shown in Fig. 23 for typical installations. For seismic units, do not remove the shipping bracket.

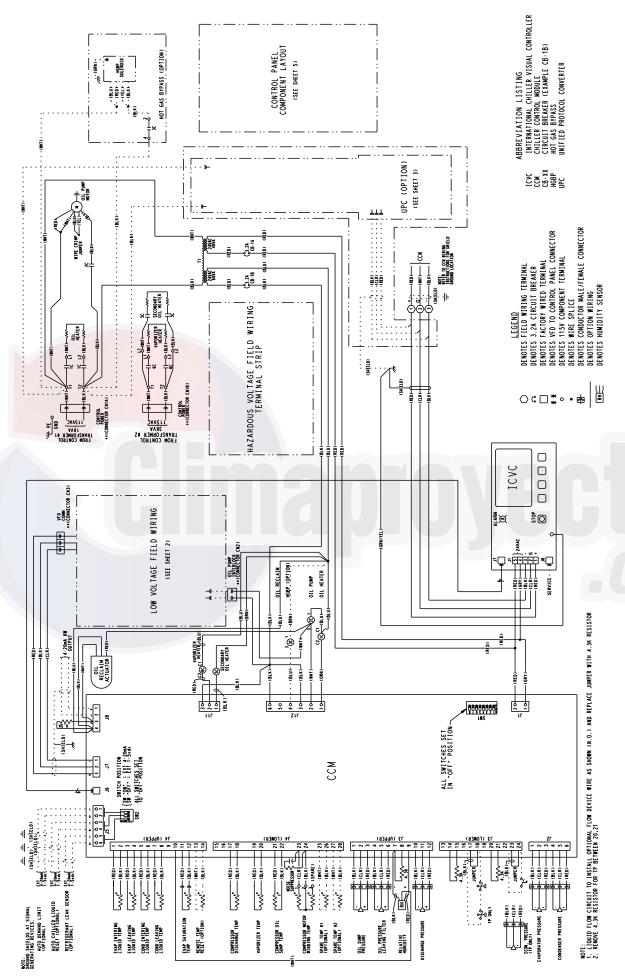


Fig. 63 — 23XRV Controls Schematic (LF-2)

UPC OPTION GATEWAY COMMUNICATION CARD P COMPRESSOR ONLY ≕⊏ TO CN1A то ссм-≪ EA1 - GATEWAY (CLR) >> COMMUNICATION * * (CONNECTOR CN3) COMM 4 HAZARDOUS VOLTAGE WIRING 12 8 EVAPORATOR PUMP CONTROL CONTACT Tarre 12 CONDENSER PUMP CONTROL CONTACT ္မ္အင္အစ္စစ္စစ္စစ္စစ္စစ္ စစ္စစ္စစ္စစ္စစ္စစ္စစ္ 13 **Š** MODULE TOWER FAN LOW CONTROL CONTACT COLDPLATE 1 dh 20 | (10 $\left\{\begin{array}{c} 1\\ \\ \\ \\ \\ \end{array}\right\}$ TOWER FAN HIGH CONTROL CONTACT }ALARM CONTACT O Same TO CB2A LOW VOLTAGE FIELD WIRING EXV ECON EXV COND 1 BRN 2 BLU 3 WHT 4 BLK 5 NC A 33 TB1 (15)-COMPRESSOR DISCH HIGH PRESSURE -(16)-4 - 20mA -(17)-8 J3 J2B J2A (A22) HEAD PRESSURE J1 📑 9 -(18)-REFERENCE OUTPUT EXV 15 0H1 2 3 4 5 6 7 8 0/1 16 ⊕ 24 25 26 SPARE SAFETY -(19)-CONTACT, NC. (REMOVE JUMPER) -20)-TO VED B (BLK) TO LIOD LEVEL SENSOR <u>(1)</u> NVERTER 58 59 59 ICE BUILD CONTACT (BLK)-000 (BLK)-(WHT)-000 (WHT)-(RED)-000 (RED)-☐ REMOTE START OIL PUMP INTERLOCK * *(CONNECTOR CN2) 18 [JI]E \odot LEGEND DENOTES FIELD WIRING TERMINAL DENOTES 3.2A CIRCUIT BREAKER DENOTES 450 TO CONTROL PANEL CONNECTOR DENOTES 1750 CONTROL PANEL CONNECTOR DENOTES 1150 COMPONENT TERMINAL DENOTES WIPE SPLICE EXV & AUX BOARD CIRCUIT ABBREVIATION LISTING ○:□**·• TO CCM J7 P COMPRESSOR ONLY VFD TERMINAL BOARD (EXAMPLE A12) CB-XX CIRCUIT BREAKER (EXAMPLE CB-1B) CCM CHILLER CONTROL MODULE EXV ELECTRONIC EXPANSION VALVE TB UPC VFD VFG TERMINAL BLOCK

Fig. 64 — 23XRV Controls Schematic Details (Rockwell LF-2 VFD)

UNIFIED PROTOCOL CONVERTER
VARIABLE FREQUENCY DRIVE
VARIABLE FREQUENCY (DRIVE) GATEWAY

DENOTES CONDUCTOR MALE/FEMALE CONNECTOR
DENOTES OPTION WIRING
DENOTES HUMIDITY SENSOR

RH

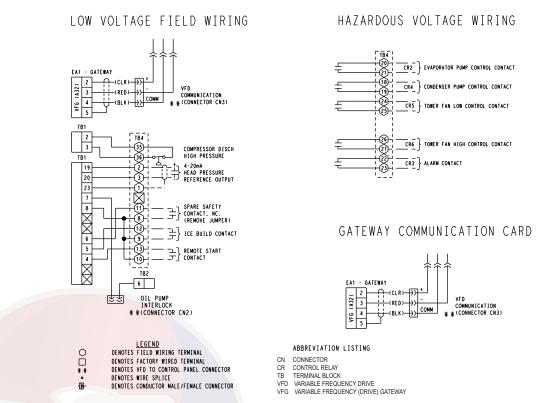


Fig. 65 — 23XRV Controls Schematic Details (Rockwell Standard Tier VFD)

LOW VOLTAGE FIELD WIRING

HAZARDOUS VOLTAGE WIRING OPTA9 MULTI-PURPOSE APPLICATION X1 +10V | 000 8 | Vin+ | 100 | 12 | 100 | 12 | 100 | 12 | 100 | 12 | 100 REFERENCE OUTPUT ANALOG INPUT VOLTAGE (RANGE 0-10 VDC) I/O GROUND ANALOG INPUT CURRENT (RANGE 4-20mA) OPTB5 (A) R01/1 R01/2 R02/1 R02/2 244 1 £ CONTROL VOLTAGE OUTPUT 24You GND DIN1 EVAP PUMP 245 2 245 13 88 245 246 23 247 26 247 248 I/O GROUND OPEN 246 3 OIL INT/LOCK (RUN) 51 247 4 OPFN 234 £ R03/1 EXTERNAL FAULT TOWER FAN (LOW) R03/2 29 248 5 249 235 DIN1-DIN3 COMMON 249 6 CONTROL VOLTAGE OUTPUT 236 237 OPTB5 (B) 250 7 236 20 R01/1 R01/2 TOWER FAN (HIGH) 251 23 252 253 253 DINA 251 SPARE SAFFTY 8 ICE BUILD REMOTE START 238 21 252 9 R02/1 R02/2 R03/1 TRIP ALARM DIN6 CMB 22 253 10 DIN4-DIN6 COMMON 4-20mA PRESS REF -/+ 239 23 234 OPEN Loui Loui -24 ANALOG OUTPUT DIGITAL OUTPUT READY 43 43 25 17 26 OPTA2 RELAY OUTPUT 1 OIL INT/LOCK (RUN) GATEWAY COMMUNICATION CARD TO SHUNT TRIP OPTC2 SEE DRIVES MODBUS AND N2 COMMUNICATION KIT USERS MANUAL MOUNT IN SLOT E ABBREVIATION LISTING DENOTES FACTORY WIRED TERMINAL DENOTES WIRE SPLICE DENOTES CONDUCTOR MALE/FEMALE CONNECTOR CN CONNECTOR OPT OPTION CARD TERMINAL BLOCK

Fig. 66 — 23XRV Controls Schematic Details (Eaton Standard Tier VFD)

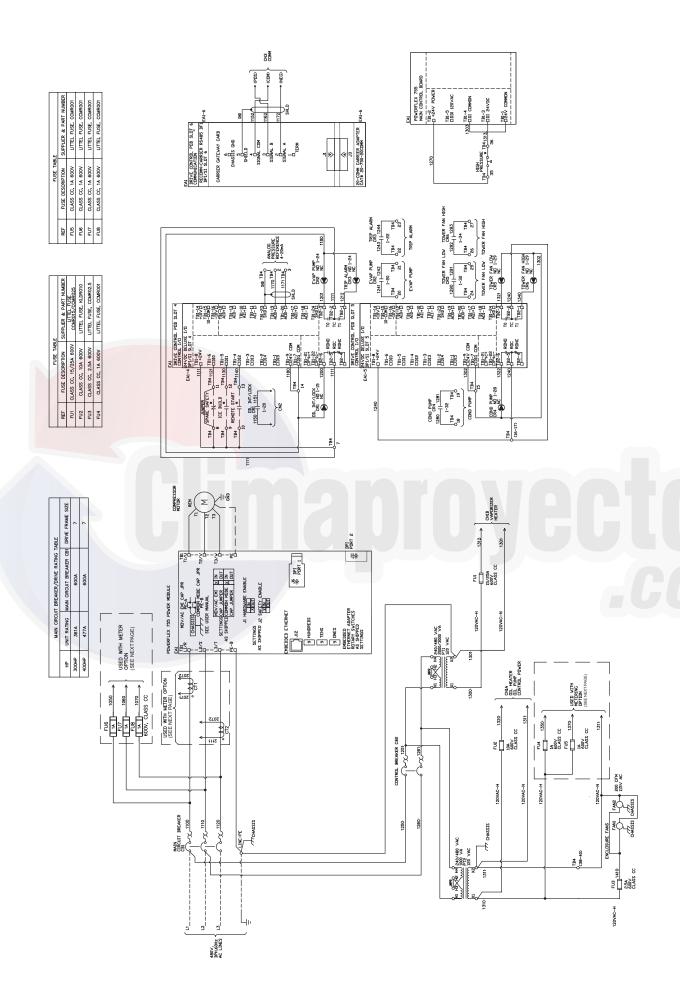


Fig. 67 — 23XRV Controls Schematic (Rockwell Standard Tier VFD Shown)

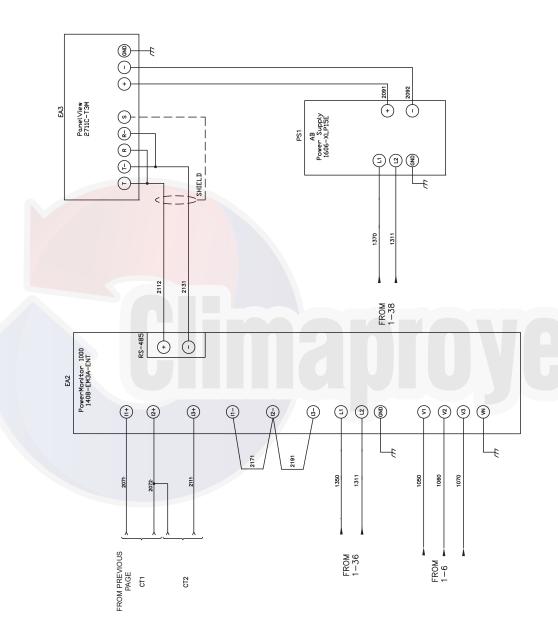
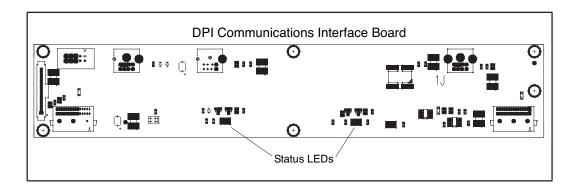
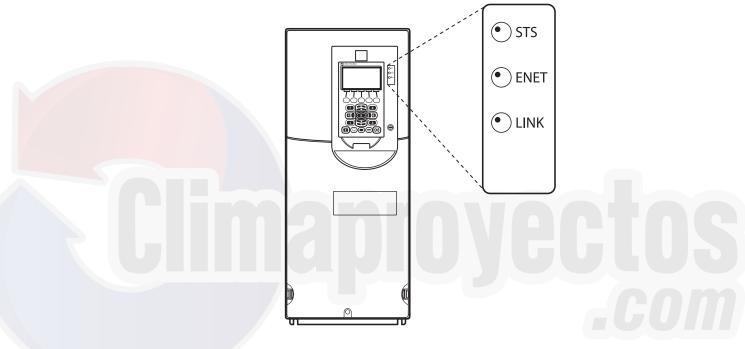
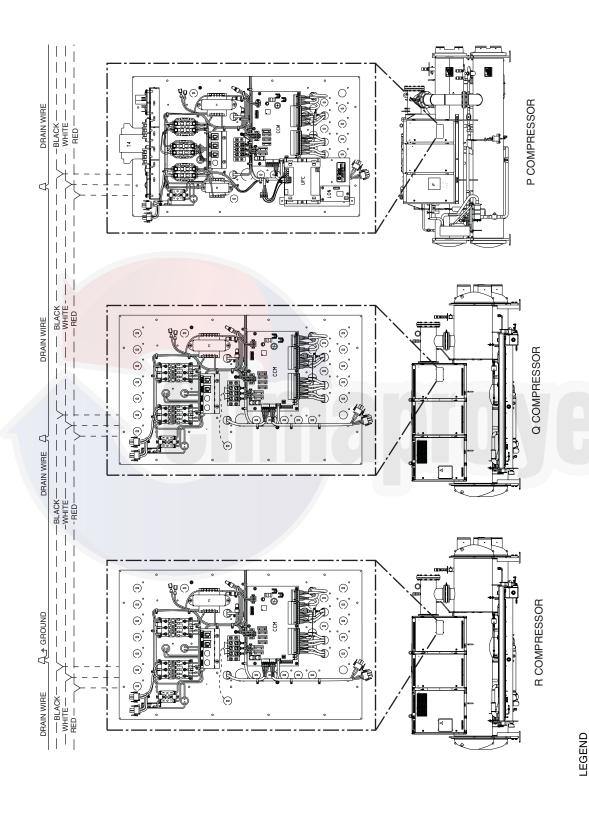


Fig. 67 — 23XRV Controls Schematic (Rockwell Standard Tier VFD Shown) (cont)

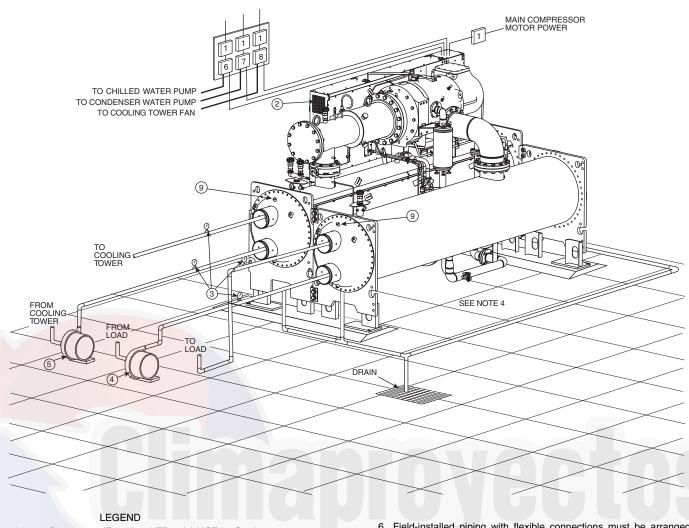




Fig. 68 — Communications Interface Board Status LEDs (LF-2 VFD)

NAME	COLOR	STATE	DESCRIPTION			
STS (Status)	Green	Flashing	Drive ready but not running, and no faults are present.			
		Steady	Drive running, no faults are present.			
	Yellow	Flashing	Drive is not running. A type 2 (non-configurable) alarm condition exists and the drive cannot be started.			
		Steady	Drive is not running, a type 1 alarm condition exists. The drive can be started.			
	Red	Flashing	A major fault has occurred. Drive cannot be started until fault condition is cleared.			
		Steady	A non-resettable fault has occurred.			
	Red/Yellow	Flashing Alternately	A minor fault has occurred. When running, the drive continues to run. System is brought to a stop under system control. Fault must be cleared to continue. Use parameter 950 [Minor Flt Config] to enable. If not enabled, acts like a major fault.			
	Green/Red	Flashing Alternately	Drive is flash updating.			
	None (Unlit)	Off	Adapter and/or network is not powered, adapter is not properly connected to the network, or adapter needs an IP address.			
	Red	Flashing	An Ethernet/IP connection has timed out.			
ENET		Steady	Adapter failed the duplicate IP address detection test.			
	Red/Green	Flashing Alternately	Adapter is performing a self-test.			
	Green	Flashing	Adapter is properly connected but is not communicating with any devices on the network.			
		Steady	Adapter is properly connected and communicating on the network.			
	None (Unlit)	Off	Adapter is not powered or is not transmitting on the network.			
LINK	Green	Flashing	Adapter is properly connected and transmitting data packets on the network.			
		Steady	Adapter is properly connected but is not transmitting on the network.			

Fig. 69 — Drive Status Indicator Status LEDs (Std Tier VFD)

NOTES:
1. A Type 1 alarm indicates that a condition exists. Type 1 alarms are user configurable.
2. A Type 2 alarm indicates that a configuration error exists and the drive cannot be started. Type 2 alarms are not configurable.



NOTE: Field-supplied terminal strip must be located in control panel.

Chiller Control Module Unified Protocol Converter Factory Wiring CCM

Field Wiring

Fig. 70 — CCN Communication Wiring for Multiple Chillers (Typical)

Disconnect (Fused on VFD only) NOT by Carrier

Unit Mounted VFD/Control Center

Pressure Gages Chilled Water Pump

Condenser Water Pump

Chilled Water Pump Starter Condensing Water Pump Starter Cooling Tower Fan Starter

Vents Piping

Control Wiring

Power Wiring

IMPORTANT: Wiring and piping shown are for general point-ofconnection only and are not intended to show details for a specific installation. Certified field wiring and dimensional diagrams are available on request.

NOTES

- All wiring must comply with applicable codes.
 Refer to Carrier System Design Manual for details regarding piping
- Wiring not shown for optional devices such as:
 remote start-stop

 - · remote alarm
 - optional safety device
 - 4 to 20 mA (1 to 5 VDC) resets
 - optional remote sensors
 - kW output
 - head pressure reference
- Service clearance under the chiller can be enhanced if the grout is not extended along the entire length of the heat exchangers.
- Carrier does not recommend pre-fab water piping.

- 6. Field-installed piping with flexible connections must be arranged and supported to avoid stress on the equipment and transmission of vibrations from the equipment as well as to prevent interference with routine access for the reading, adjusting and servicing of the equipment. Provisions shall be made for adjustment in each plane of the piping and for periodic and major servicing of the equipment.
- 7. Relief valves on the cooler and condenser must be vented to the outdoors as discharging refrigerant in closed spaces may displace oxygen and cause asphyxiation. All field-supplied refrigerant relief piping and devices must be used in accordance with ANSI/ ASHRAE standard 15.

Dual pressure relief valves are mounted on the 3-way valves in some locations to allow testing and repair without transferring the refrigerant charge. Three-way valve shafts should be turned either fully clockwise or fully counterclockwise so only one relief valve is exposed to refrigerant pressure at a time.

The flow area of discharge piping routed from more than one relief valve, or more than one heat exchanger, must be greater than the sum of the outlet areas of all relief valves that are expected to discharge simultaneously. All relief valves within a machinery room that are exposed to refrigerant may discharge simultaneously in the event of a fire. Discharge piping should lead to the point of final release as directly as possible with consideration of pressure drop in all sections downstream of the relief valves.

- Service access should be provided per standards ANSI/ASHRAE 15 and ANSI/NFPA 70 (NEC) and local safety codes. Unobstructed space adequate for inspection, servicing and rigging of all major components of the chiller is required. Shaded service areas are shown on the certified machine assembly drawing plan view and front view. See machine assembly component disassembly drawing for component removal. Space for rigging equipment and compressor removal is not shown. Isolation valves are recommended on the
- evaporator and condenser piping to each chiller for service. The installation of chilled water and cooling tower water strainers should be considered to prevent debris from collecting in the waterboxes and degrading performance.
 Flexible conduit should be used for the last few feet to the control
- center for vibration isolation of power wiring and control wiring.

Fig. 71 — 23XRV with Unit-Mounted VFD/Control Center (Unit with R Compressor Shown)

COMPLETING THE INSTALLATION

This section provides instructions on how to perform a final check of the installation. Do not energize the VFD circuit breaker. This should only be done by qualified Carrier personnel in accordance with the 23XRV Start-Up and Service Manual.

Checking the Installation — Use the following procedure to verify the condition of the installation:

⚠ WARNING

DC bus capacitors in the VFD retain hazardous voltages after input power has been disconnected. After disconnecting input power, wait 5 minutes for the DC bus capacitors to discharge then check both the VFD DPI communications interface board status LEDs and the VFD with a voltmeter to ensure the DC bus capacitors are discharged before touching any internal components. Failure to observe this precaution could result in severe bodily injury or loss of life.

- Turn off, lock out, and tag the input power to the drive. Wait 5 minutes.
- 2. Verify that there is no voltage at the input terminals (L1, L2, and L3) of the power module.
- 3. a. For LF-2 VFD, verify that the status LEDs on the DPI communications interface board are not lit. See Fig. 68. The location of the communications interface board is shown in Fig. 10.
 - b. For Std Tier VFD, verify that the keypad and drive status indicators (Fig. 69) are not lit. The location of the drive status indicator is shown in Fig. 11.
- Remove any debris, such as metal shavings, from the enclosure.
- Check that there is adequate clearance around the machine in accordance with the certified print.
- Verify that the wiring to the terminal strip and the AC input power terminals is correct.
- 7. Check that the wire size is within terminal specifications and that the wires are tightened properly.
- 8. Check that specified branch circuit protection is installed and correctly rated.
- Check that the incoming power is rated correctly.
- Verify that a properly sized ground wire is installed and a suitable earth ground is used. Check for and eliminate any grounds between the power leads. Verify that all ground leads are unbroken.

Oil Pump and Oil Heater — The oil pump and oil heater are wired at the factory. It is not necessary to connect additional wiring to these components. See Fig. 72-74.

⚠ WARNING

Voltage to terminals T1 and T3 on the 1C and 6C contactors comes from a control transformer in the starter built to Carrier specifications. Do not connect an outside source of control power to the chiller (terminals T1 and T3). An outside power source will produce dangerous voltage at the line side of the starter, because supplying voltage at the transformer secondary terminals produces input level voltage at the transformer primary terminals (see Fig. 63, 67, and 72-74).

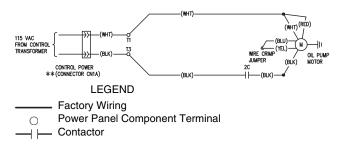


Fig. 72 — Oil Pump Wiring

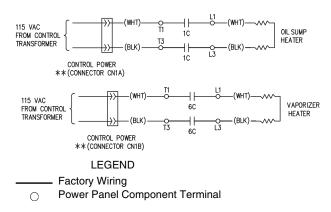


Fig. 73 — Oil Heater and Control Power Wiring

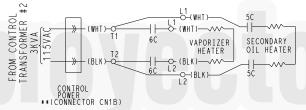


Fig. 74 — Oil Heater and Control Power Wiring, Dual-Stage Oil Heater

Connect Control Wiring — All control wiring must use shielded cable. Refer to the job wiring diagrams for cable type and cable number. Make sure the control circuit is grounded in accordance with applicable electrical codes and instructions on machine control wiring label.

Carrier Comfort Network® Interface — The Carrier Comfort Network (CCN) communication bus wiring is supplied and installed by the electrical contractor. It consists of shielded, 3-conductor cable with drain wire.

The system elements are connected to the communication bus in a daisy chain arrangement. The positive pin of each system element communication connector must be wired to the positive pins of the system element on either side of it. The negative pins must be wired to the negative pins. The signal ground pins must be wired to the signal ground pins. See Fig. 70 for location of the CCN network connections on the terminal strip labeled CCN.

NOTE: Conductors and drain wire must be 20 AWG (American Wire Gage) minimum stranded, tinned copper. Individual conductors must be insulated with PVC, PVC/nylon, vinyl, Teflon*, or polyethylene. An aluminum/polyester 100% foil shield and an outer jacket of PVC, PVC/nylon, chrome vinyl, or Teflon with a minimum operating temperature range of –4 F to 140 F (–20 C to 60 C) is required. See Table 22 for cables that meet the requirements.

^{*}Teflon is a registered trademark of DuPont.

Table 22 — Cable Manufacturers

MANUFACTURER	CABLE NO.
ALPHA	2413 or 5463
AMERICAN	A22503
BELDEN	8772
COLUMBIA	02525

When connecting the CCN communication bus to a system element, a color code system for the entire network is recommended to simplify installation and checkout. See Table 23 for the recommended color codes.

Table 23 — Insulator Codes

SIGNAL TYPE	CCN BUS CONDUCTOR INSULATION COLOR	CCN NETWORK INTERFACE (CONTROL PANEL)
GROUND	Red White Black	+ G -

If a cable with a different color scheme is selected, a similar color code should be adopted for the entire network.

NOTE: This color scheme does not apply to SIO wiring between the CCM and Gateway module.

At each system element, the shields of its communication bus cables must be tied together. If the communication bus is entirely within one building, the resulting continuous shield must be connected to ground at only one single point. See Fig. 70. If the communication bus cable exits from one building and enters another, the shields must be connected to ground at the lightening suppressor in each building where the cable enters or exits the building (one point only).

To connect the 23XRV chiller to the network, proceed as follows (see Fig. 70):

- 1. Route wire through knockout in back of control panel.
- 2. Strip back leads.
- 3. Crimp one no. 8 size spring spade terminal on each conductor.
- 4. Attach red to "+" terminal and white to "G" terminal and black to "-" terminal of CCN Network interface located in the control panel.

BACnet* Communication Option Wiring — The BACnet communication option uses the UPC Open controller. The controller communicates using BACnet on an MS/TP network segment communications at 9600 bps, 19.2 kbps, 38.4 kbps, or 76.8 kbps.

Wire the controllers on an MS/TP network segment in a daisy-chain configuration. Wire specifications for the cable are 22 AWG (American Wire Gage) or 24 AWG, low-capacitance, twisted, stranded, shielded copper wire. The maximum length is 2000 ft.

Install a BT485 terminator on the first and last controller on a network segment to add bias and prevent signal distortions due to echoing. See Fig. 75-77.

To wire the UPC Open controller to the BAS (building automation system) network:

- 1. Pull the screw terminal connector from the controller's BAS Port.
- 2. Check the communications wiring for shorts and grounds.

3. Connect the communications wiring to the BAS port's screw terminals labeled Net +, Net -, and Shield.

NOTE: Use the same polarity throughout the network segment.

- 4. Insert the power screw terminal connector into the UPC Open controller's power terminals if they are not currently connected.
- Verify communication with the network by viewing a module status report. To perform a module status report using the BACview keypad/display unit, press and hold the "FN" key then press the "." key.

To install a BT485 terminator, push the BT485, on to the BT485 connector located near the BACnet connector.

NOTE: The BT485 terminator has no polarity associated with

To order a BT485 terminator, consult Commercial Products i-Vu® Open Control System Master Prices.

MS/TP WIRING RECOMMENDATIONS — Recommendations are shown in Tables 24 and 25. The wire jacket and UL temperature rating specifications list 2 acceptable alternatives. The Halar† specification has a higher temperature rating and a tougher outer jacket than the SmokeGard** specification, and it is appropriate for use in applications where the user is concerned about abrasion. The Halar jacket is also less likely to crack in extremely low temperatures.

NOTE: Use the specified type of wire and cable for maximum signal integrity.

Lead-Lag Control Wiring — The 23XRV chiller can be wired for lead-lag operation in either series or parallel. See Fig. 78 and 79 for applicable wiring schematics.

Install Field Insulation

⚠ CAUTION

Protect insulation from weld heat damage and weld splatter. Cover with wet canvas cover during water piping installation.

When installing insulation at the job site, insulate the following components:

- compressor
- discharge pipe assembly
- cooler shell
- cooler tube sheets
- condenser shell
- condenser tubesheets
- suction piping
- economizer
- economizer muffler
- motor cooling drain
- oil reclaim piping
- vaporizer chamber
- refrigerant liquid line to cooler

NOTE: Insulation of the waterbox covers is applied only at the jobsite by the contractor. When insulating the covers, make sure there is access for removal of waterbox covers for servicing. See Fig. 80 for the insulation area for units with the P compressor. See Fig. 81 for the insulation area for units with the Q compressor. See Fig. 82 for the insulation area for units with the R compressor.

^{*}BACnet is a registered trademark of ASHRAE (American Society of Heating, Refrigerating and Air-Conditioning Engineers).† Halar is a registered trademark of Solvay Plastics.

**SmokeGard is a trademark of AlphaGary-Mexichem Corp.

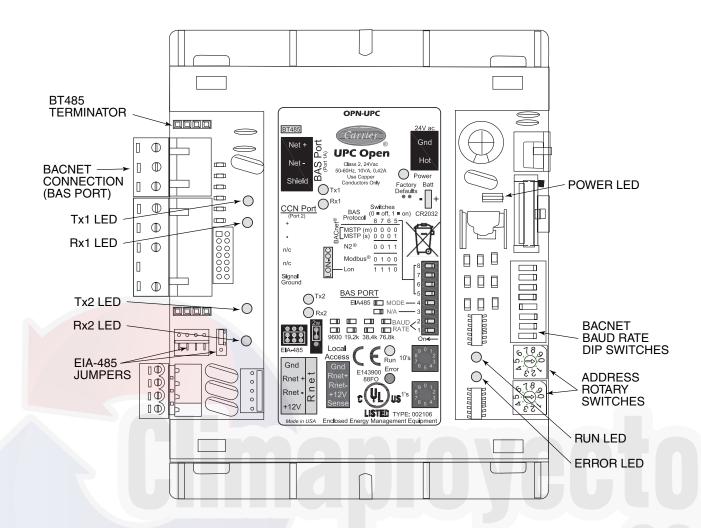


Fig. 75 — UPC Open Controller

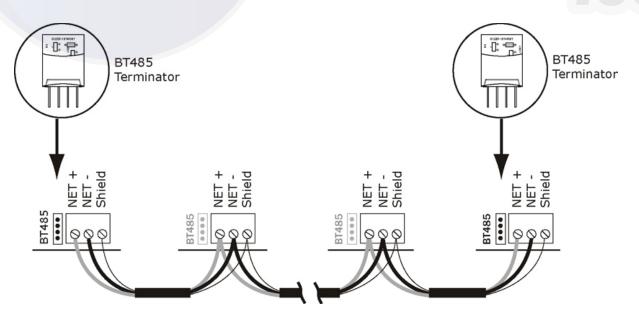


Fig. 76 — Network Wiring

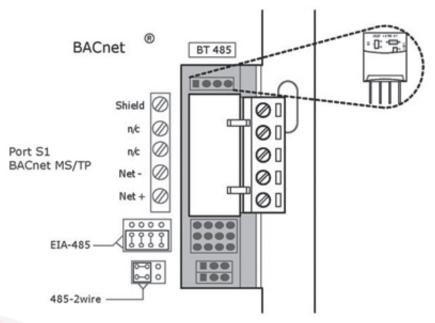


Fig. 77 — BT485 Terminator Installation

Table 24 — MS/TP Wiring Recommendations

SPECIFICATION	RECOMMENDATION
CABLE	Single twisted pair, low capacitance, CL2P, 22 AWG (7x30), TC foam FEP, plenum rated cable
CONDUCTOR	22 or 24 AWG stranded copper (tin plated)
INSULATION	Foamed FEP 0.015 in. (0.381 mm) wall 0.060 in. (1.524 mm) O.D.
COLOR CODE	Black/White
TWIST LAY	2 in. (50.8 mm) lay on pair 6 twists/foot (20 twists/meter) nominal
SHIELDING	Aluminum/Mylar shield with 24 AWG TC drain wire
JACKET	SmokeGard Jacket (SmokeGard PVC) 0.021 in. (0.5334 mm) wall 0.175 in. (4.445 mm) O.D. Halar Jacket (E-CTFE) 0.010 in. (0.254 mm) wall 0.144 in. (3.6576 mm) O.D.
DC RESISTANCE	15.2 Ohms/1000 feet (50 Ohms/km) nominal
CAPACITANCE	12.5 pF/ft (41 pF/meter) nominal conductor to conductor
CHARACTERISTIC IMPEDANCE	100 Ohms nominal
WEIGHT	12 lb/1000 feet (17.9 kg/km)
UL TEMPERATURE RATING	SmokeGard 167°F (75°C) Halar -40 to 302°F (-40 to 150°C)
VOLTAGE	300 Vac, power limited
LISTING	UL: NEC CL2P, or better

LEGEND

American Wire Gage Class 2 Plenum Cable Direct Current

AWG CL2P DC FEP NEC O.D. TC UL American Wire Gage
Class 2 Plenum Cable
Direct Current
Fluorinated Ethylene Polyn
National Electrical Code
Outside Diameter
Tinned Copper
Underwriters Laboratories Fluorinated Ethylene Polymer

Table 25 — Open System Wiring Specifications and Recommended Vendors

WIRING SPECIFICATIONS		RECOMMENDED VENDORS AND PART NUMBERS			
WIRE TYPE	DESCRIPTION	CONNECT AIR INTERNATIONAL	BELDEN	RMCORP	CONTRACTORS WIRE AND CABLE
MS/TP	22 AWG, single twisted shielded pair, low capacitance, CL2P, TC foam FEP, plenum rated. See MS/TP Installation Guide for specifications.	W221P-22227	_	25160PV	CLP0520LC
NETWORK (RS-485)	24 AWG, single twisted shielded pair, low capacitance, CL2P, TC foam FEP, plenum rated. See MS/TP Installation Guide for specifications.	W241P-2000F	82841	25120-OR	_
RNET	4 conductor, unshielded, CMP, 18 AWG, plenum rated.	W184C-2099BLB	6302UE	21450	CLP0442

LEGEND

AWG CL2P CMP FEP TC American Wire Gage Class 2 Plenum Cable

Communications Plenum Rated
 Fluorinated Ethylene Polymer
 Tinned Copper

Tinned Copper

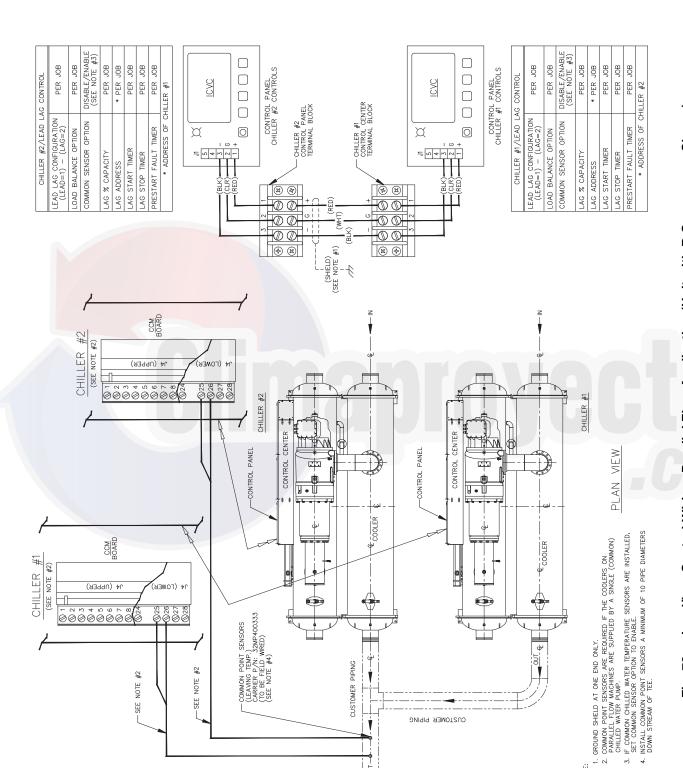


Fig. 78 — Lead/Lag Control Wiring, Parallel Flow Application (Unit with R Compressor Shown)

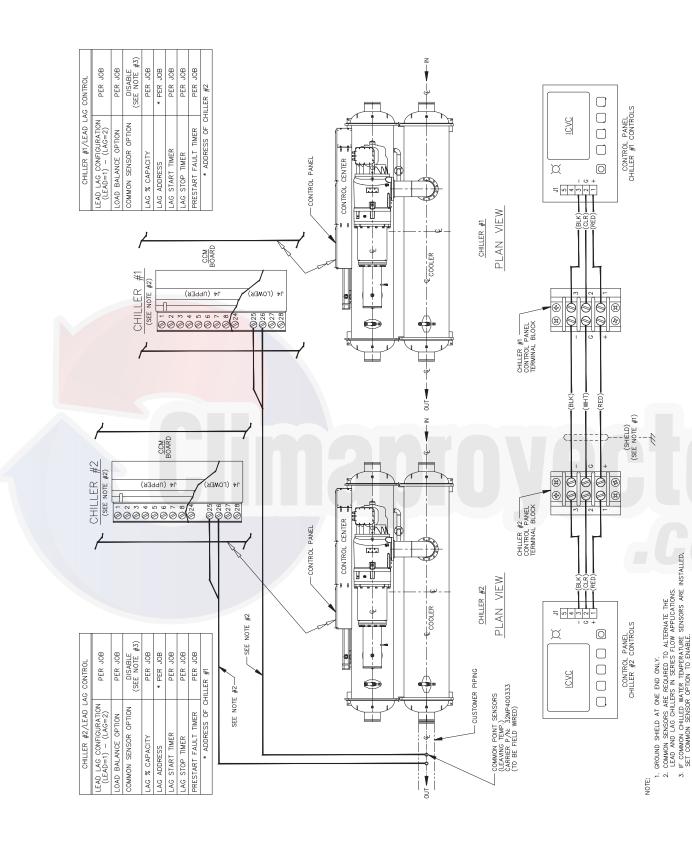
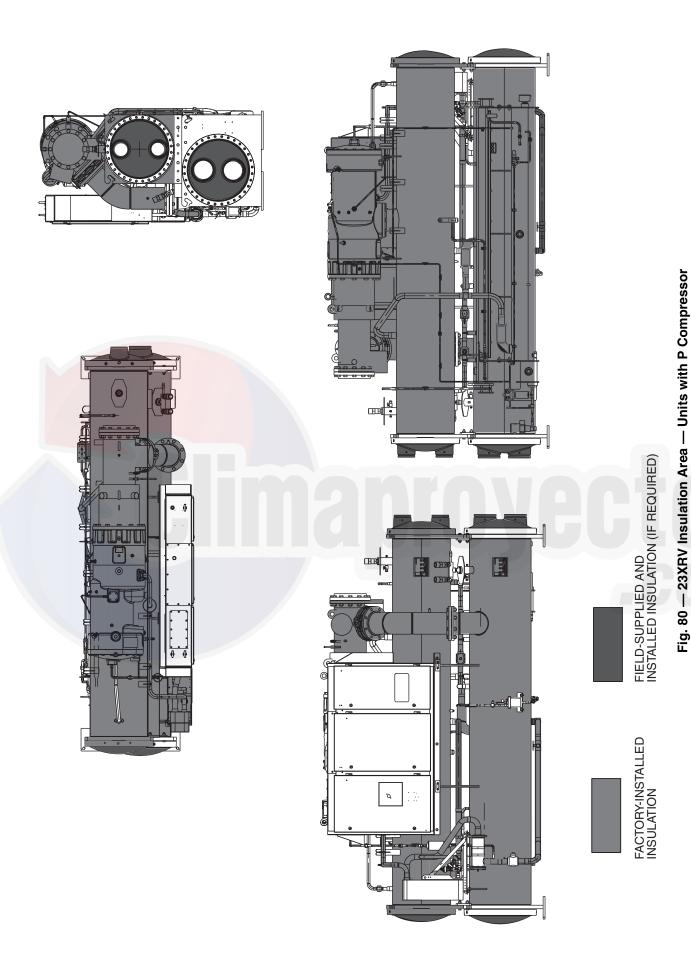



Fig. 79 — Lead/Lag Control Wiring, Series Flow Application (Unit with R Compressor Shown)

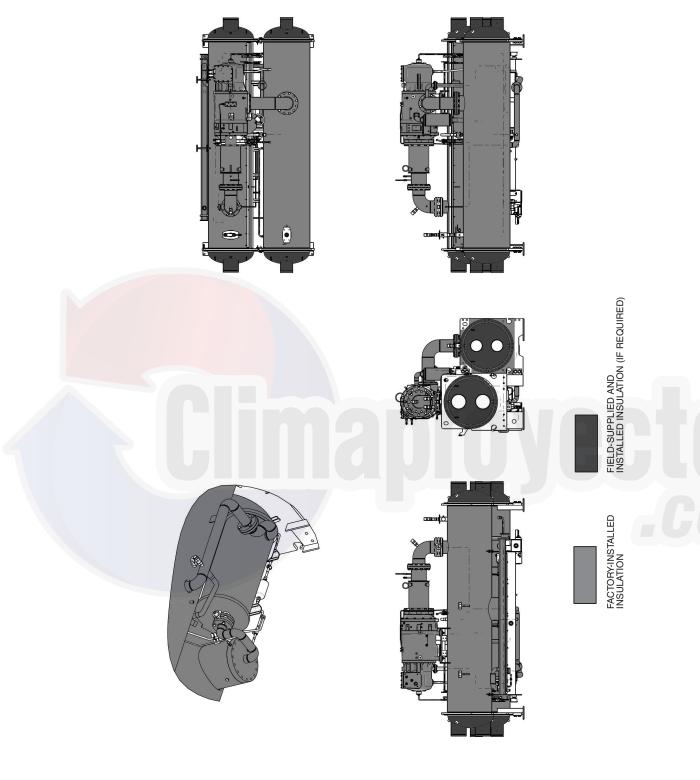


Fig. 81 — 23XRV Insulation Area — Units with Q Compressor

Fig. 82 — 23XRV Insulation Area — Units with R Compressor

INSTALLATION START-UP REQUEST CHECKLIST

NOTE: To avoid injury to personnel and damage to equipment or property when completing the procedures listed in this start-up checklist, use good judgment, follow safe practices and adhere to the safety considerations/information as outlined in preceding sections of this Installation Instructions document.

Mac	chine Model Number: 23XRV S	Serial Number:	
То:			
Attn	ı.:		
Date			
Proi	ect Name		
Carr	rier Job Number		
The after	following information provides the status of the chiller installation. Send it has been completed and signed-off by the Purchaser and Job Site Super-	a copy of this checklist to the ervisor.	local Carrier Service office
		YES/NO N/A)	DATE TO BE COMPLETED
1.	The machine is level within $1/2$ in. end to end.		
2.	The machine components are installed and connected in accordance with the installation instructions.		
3.	The isolation package and grouting (if necessary) are installed.		
4.	The relief valves are piped to the atmosphere.		
5.	All piping is installed and supported. Direction of flow is indicated in accordance with the installation instructions and job prints.		
	a. Chilled water piping		
	b. Condenser water piping		
	c. Waterbox drain piping		
	d. Pumpout unit condenser piping (if installed)		
6.	e. Other Gages are installed as called for on the job prints required to establish design flow for the cooler and condenser.		
	a. Water pressure gages IN and OUT		
	b. Water temperature gages IN and OUT		
7.	The machine's control center wiring is complete. The wiring is installed per installation instructions and certified prints.		
	a. Power wiring to VFD circuit breaker. (If chiller was disassembled not be taped until the Carrier technician megger tests the motor.)	d during installation, motor l	eads must
	b. Carrier controls can independently energize water pumps and tower fan.		
	c. Line side voltage is within ±10% of chiller nameplate voltage.		
	d. Other		

COL ALONG DOLLED LINE	

CO	MMENTS:			
TE	STING	YES/NO	DATE TO BE COMPLETED	
1.	The cooling tower fan has been checked for blade pitch and proper operation.		COMPLETED	
2.	The chilled water and condenser water lines have been:			
	a. Filled			
	b. Tested			
	c. Flushed			
	d. Vented			
	e. Strainers cleaned			
3.	The chilled water and condenser water pumps have been checked for proper rotation and flow.			CUT ALONG DOTTED LINE
4.	The following cooling load will be available for start-up:			밀
	a. 25%			8
	b. 50%			9
	c. 75%			ALO
5	d. 100% The vertice representation of the machine.			Ä
5. 6.	The refrigerant charge is at the machine. Services such as electrical power and control air will be available at start-up.			O
7.	The electrical and mechanical representatives will be available to assist in commissioning the machine.			
8.	The customer's operators will be available to receive instructions for proper operation of the chiller after start-up.			
Coı	ncerns about the installation/request for additional assistance:		GULU	
_				
+				
\rightarrow				빌
				TEDI
I ar	n aware that the start-up time for a Carrier chiller can take between 2 and cons and accessories used with it.	6 days depending on	the model of the machine and the	CUT ALONG DOTTE
You	r contact at the job site will be			SUT A
Pho	one number			Ū
Cel	l/Pager number			
Fax	number			
job	ccordance with our contract, we hereby request the services of your technic on (Date). I understand that the technician's time will be cklist that are incomplete.	cian to render start-up charged as extra serv	services per contract terms for this ices due to correcting items in this	
Sig	nature of Purchaser			
	nature of Job Site Supervisor			

© Carrier Corporation 2017