

Controls, Start-Up, Operation, Service and Troubleshooting

CONTENTS

Page	Page
SAFETY CONSIDERATIONS	Demand Limit40
GENERAL	SWITCH CONTROLLED
Conventions Used in This Manual	• EXTERNALLY POWERED (4 to 20 mA Controlled)
Basic Control Usage 4	• CCN CONTROLLED
Basic Control Usage	Remote Alarm and Alert Relays42
 ACCESSORY NAVIGATOR™ DISPLAY MODULE 	Broadcast Configuration42
CONTROLS	Alarm Control42
General	PRE-START-UP
Main Base Board (MBB)	System Check
Scroll Protection Module (SPM)	START-UP
Electronic Expansion Valve (EXV) Board9	Actual Start-Up
Fan Boards	Operating Limitations44
Reverse Rotation Board	• TEMPERATURES
• DIAL SETTINGS	• VOLTAGE
 PHASE REVERSAL PROTECTION 	 MINIMUM FLUID LOOP VOLUME
 PHASE LOSS AND UNDER-VOLTAGE 	 FLOW RATE REQUIREMENTS
PROTECTION	OPERATION
Enable-Off-Remote Contact Switch	Sequence of Operation
Emergency On/Off Switch	Dual Chiller Sequence of Operation45
Energy Management Module (EMM)	Operating Modes
Heat Reclaim (EMM HR)	Optional Heat Reclaim Module48
Local Equipment Network	SERVICE 53-61
Board Addresses	Electronic Expansion Valve (EXV)
Control Module Communication	• EXV TROUBLESHOOTING PRÓCEDURE
• RED LED	Cooler
• GREEN LED	FREEZE PROTECTION OW FI LIP TEMPERATURE
• YELLOW LED	LOW FLUID TEMPERATURE LOSS OF FLUID FLOW PROTECTION
Carrier Comfort Network® (CCN) Interface	LOSS OF FLUID FLOW PROTECTION THE PLUCCING.
Configuration Options	TUBE PLUGGING DETUDING
MINIMUM LOAD CONTROL	RETUBINGTIGHTENING COOLER HEAD BOLTS
 RAMP LOADING 	CHILLED WATER FLOW SWITCH
 MINUTES OFF TIME 	• CHILLED WATER FLOW SWITCH RTPF Condenser Coil Maintenance and Cleaning
Dual Chiller Control	Recommendations
Capacity Control	REMOVE SURFACE LOADED FIBERS
BRINE CHILLER OPERATION	PERIODIC CLEAN WATER RINSE
 CAPACITY CONTROL OVERRIDES 	ROUTINE CLEANING OF COIL SURFACES
Head Pressure Control25	MCHX Condenser Coil Maintenance and Cleaning
STANDARD UNIT	Recommendations
 LOW AMBIENT TEMPERATURE HEAD PRESSURE 	Condenser Fans
CONTROL OPTION	Refrigerant Circuit60
High-Efficiency Variable	 LEAK TESTING
Condenser Fans (HEVCF)	 REFRIGERANT CHARGE
Cooler Pump Control 29 Machine Control Methods 30	Safety Devices
SWITCH CONTROL	 COMPRESSOR PROTECTION
• TIME SCHEDULE	 CRANKCASE HEATERS
• CCN CONTROL	Relief Devices
• UNIT RUN STATUS	 HIGH-SIDE PROTECTION
Cooling Set Point Selection	• LOW-SIDE PROTECTION
• SET POINT 1	Compressors
• SET POINT 2	
• 4 TO 20 mA INPUT	OIL CHARGE CYCTEM PURPOSET OF FAMILY PROCEDURE.
• DUAL SWITCH	SYSTEM BURNOUT CLEANUP PROCEDURE
SET POINT OCCUPANCY	MAINTENANCE
Temperature Reset	Recommended Maintenance Schedule61
10111porataro 11000t	

CONTENTS (cont)

Page
TROUBLESHOOTING
Alarms and Alerts
 DIAGNOSTIC ALARM CODES AND POSSIBLE
CAUSES
Sensors
Thermistors
 COOLER ENTERING FLUID SENSOR
 COOLER LEAVING FLUID SENSOR
• DUAL CHILLER LWT
 COMPRESSOR SUCTION GAS TEMPERATURE
 OUTDOOR AIR TEMPERATURE
 CONDENSER LEAVING FLUID SENSOR
 CONDENSER ENTERING FLUID SENSOR
 SUBCOOLED CONDENSER GAS TEMPERATURE
 REMOTE SPACE TEMPERATURE
Transducers
Service Test83
APPENDIX A — LOCAL DISPLAY TABLES 94-106
APPENDIX B — CCN TABLES
APPENDIX C — CCN ALARM DESCRIPTION 122-125
APPENDIX D — R-410A PRESSURE VS.
TEMPERATURE CHART 126
APPENDIX E — MAINTENANCE SUMMARY AND
LOG SHEETS
APPENDIX F — BACNET COMMUNICATION
OPTION
APPENDIX G — SIEMENS OR SCHNEIDER LOW
AMBIENT DRIVES
INDEX. 149,150
START-UP CHECKLIST FOR 30RB
LIQUID CHILLER

SAFETY CONSIDERATIONS

Installing, starting up, and servicing this equipment can be hazardous due to system pressures, electrical components, and equipment location (roof, elevated structures, etc.). Only trained, qualified installers and service mechanics should install, start up, and service this equipment. When working on this equipment, observe precautions in the literature, and on tags, stickers, and labels attached to the equipment, and any other safety precautions that apply. Follow all safety codes. Wear safety glasses and work gloves. Use care in handling, rigging, and setting this equipment, and in handling all electrical components.

⚠ WARNING

Electrical shock can cause personal injury and death. Shut off all power to this equipment during installation. There may be more than one disconnect switch. Tag all disconnect locations to alert others not to restore power until work is completed.

⚠ WARNING

DO NOT VENT refrigerant relief valves within a building. Outlet from relief valves must be vented outdoors in accordance with the latest edition of ANSI/ASHRAE (American National Standards Institute/American Society of Heating, Refrigerating and Air-Conditioning Engineers) 15 (Safety Code for Mechanical Refrigeration). The accumulation of refrigerant in an enclosed space can displace oxygen and cause asphyxiation. Provide adequate ventilation in enclosed or low overhead areas. Inhalation of high concentrations of vapor is harmful and may cause heart irregularities, unconsciousness or death. Misuse can be fatal. Vapor is heavier than air and reduces the amount of oxygen available for breathing. Product causes eye and skin irritation. Decomposition products are hazardous.

⚠ WARNING

DO NOT USE TORCH to remove any component. System contains oil and refrigerant under pressure.

To remove a component, wear protective gloves and goggles and proceed as follows:

- a. Shut off electrical power to unit.
- b. Recover refrigerant to relieve all pressure from system using both high-pressure and low pressure ports.
- c. Traces of vapor should be displaced with nitrogen and the work area should be well ventilated. Refrigerant in contact with an open flame produces toxic gases.
- d. Cut component connection tubing with tubing cutter and remove component from unit. Use a pan to catch any oil that may come out of the lines and as a gage for how much oil to add to the system.
- e. Carefully unsweat remaining tubing stubs when necessary. Oil can ignite when exposed to torch flame.

Failure to follow these procedures may result in personal injury or death.

↑ CAUTION

This unit uses a microprocessor control system. Do not short or jumper between terminations on circuit boards or modules; control or board failure may result.

Be aware of electrostatic discharge (static electricity) when handling or making contact with circuit boards or module connections. Always touch a chassis (grounded) part to dissipate body electrostatic charge before working inside control center

Use extreme care when handling tools near boards and when connecting or disconnecting terminal plugs. Circuit boards can easily be damaged. Always hold boards by the edges and avoid touching components and connections.

This equipment uses, and can radiate, radio frequency energy. If not installed and used in accordance with the instruction manual, it may cause interference to radio communications. It has been tested and found to comply with the limits for a Class A computing device pursuant to International Standard in North America EN 61000-2/3 which are designed to provide reasonable protection against such interference when operated in a commercial environment. Operation of this equipment in a residential area is likely to cause interference, in which case the user, at his own expense, will be required to take whatever measures may be required to correct the interference.

Always store and transport replacement or defective boards in anti-static shipping bag.

A CAUTION

To prevent potential damage to heat exchanger, always run fluid through heat exchanger when adding or removing refrigerant charge. Use appropriate brine solutions in cooler fluid loop to prevent the freezing of heat exchanger, optional hydronic section and/or interconnecting piping when the equipment is exposed to temperatures below 32 F (0° C). Proof of flow switch and strainer are factory installed on all models. Do NOT remove power from this chiller during winter shutdown periods without taking precaution to remove all water from heat exchanger and optional hydronic system. Failure to properly protect the system from freezing may constitute abuse and may void warranty.

⚠ CAUTION

Compressors and optional hydronic system pumps require specific rotation. Check reverse rotation board. If lower (red) LED is blinking, the phase sequence is incorrect. Swap any two incoming power leads to correct condenser fan rotation before starting any other motors. Operating the unit without verifying proper phasing could result in equipment damage.

⚠ CAUTION

Refrigerant charge must be removed slowly to prevent loss of compressor oil that could result in compressor failure.

⚠ CAUTION

Puron® refrigerant (R-410A) systems operate at higher pressures than standard R-22 systems. Do not use R-22 service equipment or components on Puron refrigerant equipment. If service equipment is not rated for Puron refrigerant, equipment damage or personal injury may result.

⚠ CAUTION

DO NOT re-use compressor oil or any oil that has been exposed to the atmosphere. Dispose of oil per local codes and regulations. DO NOT leave refrigerant system open to air any longer than the actual time required to service the equipment. Seal circuits being serviced and charge with dry nitrogen to prevent oil contamination when timely repairs cannot be completed. Failure to follow these procedures may result in damage to equipment.

GENERAL

This publication contains Controls, Operation, Start-Up, Service and Troubleshooting information for the 30RB060-390 air-cooled liquid chillers with electronic controls. The 30RB chillers are equipped with *Comfort*Link controls and electronic expansion valves.

NOTE: Unit sizes 315-390 are modular units that are shipped in separate sections as modules A or B as noted in position 8 of the unit model number. Installation directions specific to these units are noted in these instructions. For modules 315A, 315B, 330A, 330B, 345A, 345B, and 360B, follow all general instructions as noted for unit sizes 30RB160,170. For modules 360A, 390A, and 390B, follow instructions for 30RB190. See Table 1 for a listing of unit sizes and modular combinations.

NOTE: The nameplate for modular units contains only the first two digits in the model number. For example, 315A and 315B nameplates read 31A and 31B.

Table 1 — Modular Unit Combinations

UNIT SIZE	MODULE A	MODULE B
30RB315	30RB160	30RB160
30RB330	30RB170	30RB160
30RB345	30RB170	30RB170
30RB360	30RB190	30RB170
30RB390	30RB190	30RB190

Conventions Used in This Manual — The following conventions for discussing configuration points for the local display (scrolling marquee or NavigatorTM accessory) will be used in this manual.

Point names will be written with the mode name first, then any sub-modes, then the point name, each separated by an arrow symbol (→). Names will also be shown in bold and italics. As an example, the Lead/Lag Circuit Select Point, which is located in the Configuration mode, Option sub-mode, would be written as *Configuration* →*OPTN*→*LLCS*.

This path name will show the user how to navigate through the local display to reach the desired configuration. The user would scroll through the modes and sub-modes using the and keys. The arrow symbol in the path name represents pressing ENTER to move into the next level of the menu structure.

When a value is included as part of the path name, it will be shown at the end of the path name after an equals sign. If the value represents a configuration setting, an explanation will be shown in parenthesis after the value. As an example, $Configuration \rightarrow OPTN \rightarrow LLCS = 1$ (Circuit A leads).

Pressing the ESCAPE and ENTER keys simultaneously will scroll an expanded text description of the point name or value across the display. The expanded description is shown in the local display tables but will not be shown with the path names in text.

The CCN (Carrier Comfort Network®) point names are also referenced in the local display tables for users configuring the unit with CCN software instead of the local display. The CCN tables are located in Appendix B of the manual.

Basic Control Usage

SCROLLING MARQUEE DISPLAY — The scrolling marquee display is the standard interface display to the *Comfort*Link control system for 30RB units. The display has up and down arrow keys, an <code>ENTER</code> key, and an <code>ESCAPE</code> key. These keys are used to navigate through the different levels of the display structure. Press the <code>ESCAPE</code> key until the highest operating level is displayed to move through the top 11 mode levels indicated by LEDs (light-emitting diodes) on the left side of the display. See Fig. 1.

Once within a mode or sub-mode, pressing the ENTER and ESCAPE keys simultaneously will put the scrolling marquee display into expanded text mode where the full meaning of all sub-modes, items and their values can be displayed for the current selection. Press the ENTER and ESCAPE keys to return the scrolling marquee display to its default menu of rotating display items (those items in *Run Status* → *VIEW*). In addition, the password will be disabled, requiring that it be entered again before changes can be made to password protected items. Press the ESCAPE key to exit out of the expanded text mode.

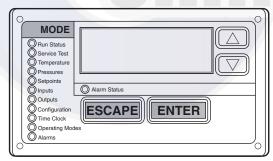


Fig. 1 — Scrolling Marquee Display

NOTE: When the Language Selection (*Configuration* \rightarrow *DISP* \rightarrow *LANG*), variable is changed, all appropriate display expansions will immediately change to the new language. No power-off or control reset is required when reconfiguring languages.

When a specific item is located, the item name alternates with the value. Press the ENTER key at a changeable item and the value will be displayed. Press ENTER again and the value will begin to flash indicating that the value can be changed. Use the up and down arrow keys to change the value, and confirm the value by pressing the ENTER key.

Changing item values or testing outputs is accomplished in the same manner. Locate and display the desired item. Press ENTER so that the item value flashes. Use the arrow keys to change the value or state and press the ENTER key to accept

it. Press the ESCAPE key to return to the next higher level of structure. Repeat the process as required for other items.

Items in the Configuration and Service Test modes are password protected. The words 'PASS' and 'WORD' will alternate on the display when required. The default password is 0111. Press ENTER and the 1111 password will be displayed. Press ENTER again and the first digit will begin to flash. Use the arrow keys to change the number and press ENTER to accept the digit. Continue with the remaining digits of the password. The password can only be changed through CCN operator interface software such as ComfortWORKS®, ComfortVIEWTM and Service Tool.

See Table 2 and Appendix A for further details.

ACCESSORY NAVIGATORTM DISPLAY MODULE — The Navigator module provides a mobile user interface to the *Comfort*Link control system, which is only available as a field-installed accessory. The display has up and down arrow keys, an ENTER key, and an ESCAPE key. These keys are used to navigate through the different levels of the display structure. Press the ESCAPE key until 'Select a Menu Item' is displayed to move through the top 11 mode levels indicated by LEDs on the left side of the display. See Fig. 2.

Fig. 2 — Accessory Navigator Display Module

Once within a Mode or sub-mode, a ">" indicates the currently selected item on the display screen. Pressing the ENTER and ESCAPE keys simultaneously will put the Navigator module into expanded text mode where the full meaning of all sub-modes, items and their values can be displayed. Pressing the ENTER and ESCAPE keys when the display says 'Select Menu Item' (Mode LED level) will return the Navigator module to its default menu of rotating display items (those items in *Run Status*→*VIEW*). In addition, the password will be disabled, requiring that it be entered again before changes can be made to password protected items. Press the ESCAPE key to exit out of the expanded text mode.

NOTE: When the Language Selection (*Configuration* \rightarrow *DISP* \rightarrow *LANG*), variable is changed, all appropriate display expansions will immediately change to the new language. No power-off or control reset is required when reconfiguring languages.

When a specific item is located, the item name appears on the left of the display, the value will appear near the middle of the display and the units (if any) will appear on the far right of the display. Press the ENTER key at a changeable item and the value will begin to flash. Use the up and down arrow keys to

change the value, and confirm the value by pressing the [ENTER] key.

Changing item values or testing outputs is accomplished in the same manner. Locate and display the desired item. Press ENTER so that the item value flashes. Use the arrow keys to change the value or state and press the ENTER key to accept it. Press the ESCAPE key to return to the next higher level of structure. Repeat the process as required for other items.

Items in the Configuration and Service Test modes are password protected. The words **Enter Password** will be displayed when required, with 1111 also being displayed. The default password is 0111. Use the arrow keys to change the number and press **ENTER** to enter the digit. Continue with the remaining digits of the password. The password can only be changed through CCN operator interface software such as ComfortWORKS, ComfortVIEW and Service Tool.

Adjusting the Contrast — The contrast of the display can be adjusted to suit ambient conditions. To adjust the contrast of the Navigator module, press the ESCAPE key until the display reads, "Select a menu item." Using the arrow keys move to the Configuration mode. Press ENTER to obtain access to this mode. The display will read:

> TEST OFF METR OFF LANG ENGLISH Pressing ENTER will cause the "OFF" to flash. Use the up or down arrow to change "OFF" to "ON." Pressing ENTER will illuminate all LEDs and display all pixels in the view screen. Pressing ENTER and ESCAPE simultaneously allows the user to adjust the display contrast. Use the up or down arrows to adjust the contrast. The screen's contrast will change with the adjustment. Press ENTER to accept the change. The Navigator module will keep this setting as long as it is plugged in to the LEN (local equipment network) bus.

Adjusting the Backlight Brightness — The backlight of the display can be adjusted to suit ambient conditions. The factory default is set to the highest level. To adjust the backlight of the Navigator module, press the ESCAPE key until the display reads, "Select a menu item." Using the arrow keys move to the Configuration mode. Press ENTER to obtain access to this mode. The display will read:

> TEST OFF METR OFF LANG ENGLISH

Pressing ENTER will cause the "OFF" to flash. Use the up or down arrow keys to change "OFF" to "ON." Pressing ENTER will illuminate all LEDs and display all pixels in the view screen. Pressing the up and down arrow keys simultaneously allows the user to adjust the display brightness. Use the up or down arrow keys to adjust screen brightness. Press ENTER to accept the change. The Navigator module will keep this setting as long as it is plugged in to the LEN bus.

Table 2 — ComfortLink Display Menu Structure

					MODE					
RUN STATUS	SERVICE TEST	TEMPERATURE	PRESSURE	SET POINTS	INPUTS	оитритѕ	CONFIGURATION	TIME CLOCK	OPERATING MODES	ALARMS
Auto Display (VIEW)	Manual Test Mode (TEST)	Unit Temperatures (UNIT)	Circuit A Pressures (PRC.A)	Cooling Setpoints (COOL)	General Inputs (GEN.I)	Circuit A Outputs (CIR.A)	Display Configuration (DISP)	Time of Day (TIME)	Operating Control Type (SLCT)	Reset Current Alarms (R.ALM)
Remote User Interface (R.CCN)	Quick Test Mode (QUIC)	Circuit A Temperatures (CIR.A)	Circuit B Pressures (PRC.B)	Heating Setpoints (HEAT)		Circuit B Outputs (CIR.B)	Unit Configuration (UNIT)	Day, Date (DATE)	Operating Modes (MODE)	Current Alarms (ALRM)
Machine Starts/ Hours (RUN)		Circuit B Temperatures (CIR.B)	Circuit C Pressures (PRC.C)	Misc. Setpoints (MISC)		Circuit C Outputs (CIR.C)	Service Configurations (SERV)	Schedule 1 (SCH1)		Alarm History (H.ALM)
Compressor Run Hours (HOUR)		Circuit C Temperatures (CIR.C)				General Outputs (GEN.O)	Options Configuration (OPTN)	Schedule 2 (SCH2)		
Compressor Starts (STRT)							Reset, Demand Limit, Master/Slave (RSET)	Holidays (HOLI)		
Fan Run Hours (FAN)								Service Maintenance Configuration (MCFG)		
Compressor Disable (CP.UN)										
Predictive Maintenance (MAIN)										
Software Versions (VERS)										

CONTROLS

General — The 30RB air-cooled liquid chillers contain the *Comfort*Link electronic control system that controls and monitors all operations of the chiller. The control system is composed of several components as listed in the following sections. All machines have at the very least a main base board (MBB), scrolling marquee display, electric expansion valve board (EXV), fan board, one scroll protection module (SPM) per compressor, Emergency On/Off switch, an Enable-Off- Remote Contact switch and a reverse rotation board.

Main Base Board (MBB) — The MBB is the heart of the *Comfort*Link control system, which contains the major portion of operating software and controls the operation of the

machine. See Fig. 3. The MBB continuously monitors input/ output channel information received from its inputs and from all other modules. The MBB receives inputs from status and feedback switches, pressure transducers and thermistors. The MBB also controls several outputs. Some inputs and outputs to control the machine are located on other boards, but are transmitted to or from the MBB via the internal communications bus. Information is transmitted between modules via a 3-wire communication bus or LEN (Local Equipment Network). The CCN (Carrier Comfort Network®) bus is also supported. Connections to both LEN and CCN buses are made at TB3. For a complete description of main base board inputs and outputs and their channel identifications, see Table 3.

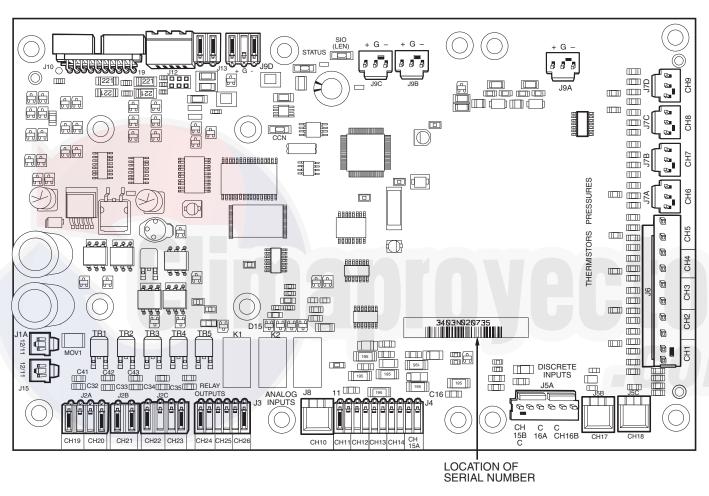


Fig. 3 — Main Base Board

Table 3 — Main Base Board Inputs and Outputs

DESCRIPTION	INPUT/OUTPUT	I/O TYPE	SCROLLING MARQUEE	CONNECTION POINT
	1147017001701	//OTTPL	POINT NAME	Pin Notation
				MBB-J1A, MBB-J1B
Power (24 vac supply)	_	_	_	11 24 vac
				12 Ground
				MBB-J9A, MBB-J9B,
				MBB-J9C, MBB-J9D
Local Equipment Network	_	_	-	+
				G
				-
				MBB-J12
Carrier Comfort Network®	_	_	_	+
(CCN)				G
				-
External Chilled Water Pump Interlock	PMPI	Switch	INPUTS→GEN.I→LOCK	MBB-J4-CH15A
water Fullip Interlock				MBB-J5A-CH15B
Chilled Water Flow Switch	CWFS	Switch	INPUTS→GEN.I→LOCK	
Damand Linets Controls #4	Danie and Lineit OWA	Outlet	INDUTO OFNI DIOI	15B
Demand Limit Switch #1	Demand Limit SW1	Switch	INPUTS→GEN.I→DLS1	MBB-J4-CH13
				MBB-J7A-CH6
Circuit A Discharge	DPTA	Pressure Transducer	PRESSURE→PRC.A→DP.A	5V 5 vdc Ref.
Pressure Transducer		(0-5 VDC)		S Signal
				R Return
				MBB-J7C-CH8
Circuit B Discharge	DPTB	Pressure Transducer	PRESSURE→PRC.B→DP.B	5V 5 vdc Ref.
Pressure Transducer	DI 1B	(0-5 VDC)	FNESSONE-FNC.DDF.D	S Signal
				R Return
Dual Chiller	DUAL	5k Thermistor	TEMPERATURE UNIT CHWS	MBB-J6-CH3
LWT Thermistor				
Dual Set Point Input	Dual Set Point	Switch	INPUTS→GEN.I→DUAL	MBB-J4-CH12
Entering Water Thermistor	EWT	5k Thermistor	TEMPERATURE→UNIT→EWT	MBB-J6-CH2
Leaving Water Thermistor	LWT	5k Thermistor	TEMPERATURE - UNIT - LWT	MBB-J6-CH1
Outdoor Air Thermistor	OAT	5k Thermistor	TEMPERATURE→UNIT→OAT	MBB-J6-CH4
Pump #1 Interlock	PMP1			MBB-J5C-CH18
Pump #2 Interlock	PMP2	Switch	INPUTS→GEN.I→PUMP	18
				С
Reverse Rotation Board	Reverse Rotation Board	Switch	INPUTS→GEN.I→ELEC	MBB-J5A-CH16B
	7.070.00 7.010.10.11	01111011	616 / 6.21 / 2226	16B
				MBB-J7B-CH7
Circuit A Suction	SPTA	Pressure Transducer	PRESSURE→PRC.A→SP.A	5V 5 vdc Ref.
Pressure Transducer	OI TA	(0-5 VDC)	THEOCONE 71 NO.A 701 .A	S Signal
		į.	1	R Return
				n netuiii
				MBB-J7D-CH9
Circuit B Suction	CDTD	Pressure Transducer	DDECCUDE A DD DA A CD D	
Circuit B Suction Pressure Transducer	SPTB	Pressure Transducer (0-5 VDC)	PRESSURE→PR.B→SP.B	MBB-J7D-CH9
	SPTB		PRESSURE→PR.B→SP.B	MBB-J7D-CH9 5V 5 vdc Ref.
	SPTB Remote Contact-Off-Enable		PRESSURE→PR.B→SP.B INPUTS→GEN.I→ONOF	MBB-J7D-CH9 5V 5 vdc Ref. S Signal
Pressure Transducer Unit Status	Remote Contact-Off-Enable	(0-5 VDC) Switch	INPUTS→GEN.I→ONOF	MBB-J7D-CH9 5V 5 vdc Ref. S Signal R Return MBB-J4-CH11
Pressure Transducer Unit Status Alarm Relay	Remote Contact-Off-Enable ALM R	(0-5 VDC) Switch Relay	INPUTS→GEN.I→ONOF OUTPUTS→GEN.O→ALRM	MBB-J7D-CH9 5V 5 vdc Ref. S Signal R Return MBB-J4-CH11 MBB-J3-CH24
Pressure Transducer Unit Status Alarm Relay Alert Relay	Remote Contact-Off-Enable ALM R ALT R	(0-5 VDC) Switch Relay Relay	INPUTS→GEN.I→ONOF OUTPUTS→GEN.O→ALRM OUTPUTS→GEN.O→ALRT	MBB-J7D-CH9 5V 5 vdc Ref. S Signal R Return MBB-J4-CH11 MBB-J3-CH24 MBB-J3-CH25
Unit Status Alarm Relay Alert Relay Cooler Heater	Remote Contact-Off-Enable ALM R ALT R CL-HT	Switch Relay Relay TRIAC	INPUTS→GEN.I→ONOF OUTPUTS→GEN.O→ALRM OUTPUTS→GEN.O→ALRT OUTPUTS→GEN.O→CO.HT	MBB-J7D-CH9 5V 5 vdc Ref. S Signal R Return MBB-J4-CH11 MBB-J3-CH24 MBB-J3-CH25 MBB-J2B-CH21
Pressure Transducer Unit Status Alarm Relay Alert Relay	Remote Contact-Off-Enable ALM R ALT R	(0-5 VDC) Switch Relay Relay	INPUTS→GEN.I→ONOF OUTPUTS→GEN.O→ALRM OUTPUTS→GEN.O→ALRT	MBB-J7D-CH9 5V 5 vdc Ref. S Signal R Return MBB-J4-CH11 MBB-J3-CH24 MBB-J3-CH25
Unit Status Alarm Relay Alert Relay Cooler Heater Circuit A Minimum Load Control* Circuit B Minimum	Remote Contact-Off-Enable ALM R ALT R CL-HT MLV-A	Switch Relay Relay TRIAC	$INPUTS \rightarrow GEN.I \rightarrow ONOF$ $OUTPUTS \rightarrow GEN.O \rightarrow ALRM$ $OUTPUTS \rightarrow GEN.O \rightarrow ALRT$ $OUTPUTS \rightarrow GEN.O \rightarrow CO.HT$ $OUTPUTS \rightarrow CIR.A \rightarrow HGB.A$	MBB-J7D-CH9 5V 5 vdc Ref. S Signal R Return MBB-J4-CH11 MBB-J3-CH24 MBB-J3-CH25 MBB-J2B-CH21 MBB-J2C-CH22
Unit Status Alarm Relay Alert Relay Cooler Heater Circuit A Minimum Load Control* Circuit B Minimum Load Control*	Remote Contact-Off-Enable ALM R ALT R CL-HT MLV-A MLV-B	Switch Relay Relay TRIAC TRIAC	INPUTS→GEN.I→ONOF OUTPUTS→GEN.O→ALRM OUTPUTS→GEN.O→ALRT OUTPUTS→GEN.O→CO.HT OUTPUTS→CIR.A→HGB.A OUTPUTS→CIR.B→HGB.B	MBB-J7D-CH9 5V 5 vdc Ref. S Signal R Return MBB-J4-CH11 MBB-J3-CH24 MBB-J3-CH25 MBB-J3-CH25 MBB-J2B-CH21 MBB-J2C-CH22 MBB-J2C-CH23
Unit Status Alarm Relay Alert Relay Cooler Heater Circuit A Minimum Load Control* Circuit B Minimum Load Control* Pump #1 Starter	Remote Contact-Off-Enable ALM R ALT R CL-HT MLV-A MLV-B PMP1	Switch Relay Relay TRIAC	$INPUTS \rightarrow GEN.I \rightarrow ONOF$ $OUTPUTS \rightarrow GEN.O \rightarrow ALRM$ $OUTPUTS \rightarrow GEN.O \rightarrow ALRT$ $OUTPUTS \rightarrow GEN.O \rightarrow CO.HT$ $OUTPUTS \rightarrow CIR.A \rightarrow HGB.A$	MBB-J7D-CH9 5V 5 vdc Ref. S Signal R Return MBB-J4-CH11 MBB-J3-CH24 MBB-J3-CH25 MBB-J2B-CH21 MBB-J2C-CH22
Unit Status Alarm Relay Alert Relay Cooler Heater Circuit A Minimum Load Control* Circuit B Minimum Load Control*	Remote Contact-Off-Enable ALM R ALT R CL-HT MLV-A MLV-B	Switch Relay Relay TRIAC TRIAC	INPUTS→GEN.I→ONOF OUTPUTS→GEN.O→ALRM OUTPUTS→GEN.O→ALRT OUTPUTS→GEN.O→CO.HT OUTPUTS→CIR.A→HGB.A OUTPUTS→CIR.B→HGB.B	MBB-J7D-CH9 5V 5 vdc Ref. S Signal R Return MBB-J4-CH11 MBB-J3-CH24 MBB-J3-CH25 MBB-J3-CH25 MBB-J2B-CH21 MBB-J2C-CH22 MBB-J2C-CH23

 $^{^{\}star}$ Controls discharge and liquid line isolation solenoids for 30RB120-190 brine units only.

Scroll Protection Module (SPM) — There is one SPM per compressor and it is responsible for controlling that compressor. See Fig. 4. The device controls the compressor contactor and the compressor crankcase heater. The SPM module also monitors the compressor motor temperature, and circuit high pressure switch. The SPM responds to commands from the MBB (main base board) and sends the MBB the results of the channels it monitors via the LEN (Local Equipment Network). See below for SPM board address information. See Table 4 for SPM inputs and outputs.

SPM-A1 DIP Switch	1	2	3	4	5	6	7	8			
Address:	ON	OFF	OFF	OFF	ON	OFF	OFF	OFF			
SPM-A2 DIP Switch	1	2	3	4	5	6	7	8			
Address:	OFF	ON	OFF	OFF	ON	OFF	OFF	OFF			
SPM-A3 DIP Switch	1	2	3	4	5	6	7	8			
Address:	OFF	OFF	ON	OFF	ON	OFF	OFF	OFF			
SPM-A4 DIP Switch	1	2	3	4	5	6	7	8			
Address:	OFF	OFF	OFF	ON	ON	OFF	OFF	OFF			
SPM-B1 DIP Switch	1	2	3	4	5	6	7	8			
Address:	ON	OFF	OFF	OFF	OFF	ON	OFF	OFF			

SPM-B2 DIP Switch	1	2	3	4	5	6	7	8				
Address:	OFF	ON	OFF	OFF	OFF	ON	OFF	OFF				
SPM-B3 DIP Switch	1	2	3	4	5	6	7	8				
Address:	OFF	OFF	ON	OFF	OFF	ON	OFF	OFF				
SPM-B4 DIP Switch	1	2	3	4	5	6	7	8				
Address:	OFF	OFF	OFF	ON	OFF	ON	OFF	OFF				
SPM-C1 DIP Switch	1	2	3	4	5	6	7	8				
Address:	ON	OFF	OFF	OFF	OFF	OFF	ON	OFF				
SPM-C2 DIP Switch	1	2	3	4	5	6	7	8				
Address:	OFF	ON	OFF	OFF	OFF	OFF	ON	OFF				
			_									
SPM-C3 DIP Switch	1	2	3	4	5	6	7	8				
Address:	OFF	OFF	ON	OFF	OFF	OFF	ON	OFF				
SPM-C4 DIP Switch	1	2	3	4	5	6	7	8				
Address:	OFF	OFF	OFF	ON	OFF	OFF	ON	OFF				

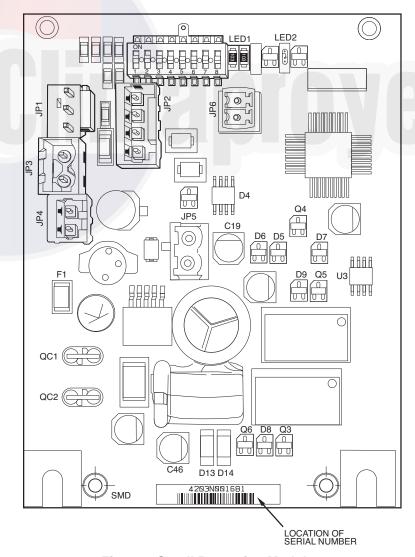


Fig. 4 — Scroll Protection Module

Electronic Expansion Valve (EXV) Board —

At least one EXV board is used in all machines. There is one EXV board for 2-circuit machines. Three-circuit machines have two EXV boards. See Fig. 5. The board is responsible for monitoring the return gas temperature thermistors. The board also signals the EXV motors to open or close. The electronic expansion valve board responds to commands from the MBB and sends the MBB the results of the channels it monitors via the LEN (local equipment network). See below for DIP switch

information for EXV1 and EXV2. See Tables 5 and 6 for EXV inputs and outputs.

EXV1 DIP Switch	1	2	3	4	5	6	7	8
Address:	ON	ON	ON	ON	ON	ON	OFF	ON
EXV2 DIP Switch	1	2	3	4	5	6	7	8

Table 4 — Scroll Protection Module Inputs and Outputs*

DESCRIPTION	INPUT/OUTPUT //O TYPE		SCROLLING MARQUEE	CONNECTION POINT		
DESCRIPTION	INPUI/OUTPUT	I/O I TPE	POINT NAME	Pin	Notation	
				SPM-xn-J1		
Power (24 vac supply)	_	_	_	QC1	24 vac	
				QC2	Ground	
				SPI	И-xn-JP1	
				1	+	
				2	G	
Local Equipment Notwork				3	-	
Local Equipment Network	_	_	_	SPI	И-xn-JP2	
				2	+	
				3	G	
				4	-	
				SPI	И-xn-JP3	
Circuit x High Pressure Switch	HPS-x	Switch	Not available	1		
				2		
		PTC Thermistor		SPI	Л-xn-JP4	
mpressor xn Motor Temperature	MTR-xn		Not available	1		
				2		
				SPI	M-xn-JP5	
Compressor xn Contactor	Cxn	Relay	OUTPUTS-CIR.x-CP.xn	1		
				2		
				SPI	M-xn-JP6	
Crankcase Heater	ССН	Relay	OUTPUTS-CIR.x-HT.xn	1		
				2		
				SPI	M-xn-JP2	
Circuit x High Pressure Switch	HPS-x	Switch	Not available	1		
enotes the circuit, A, B or C. "n" deno	tes the compressor nu Table 5 — EXV		and Outputs			
		· ·	SCROLLING MARQUEE	CONNEC	TION POINT	

^{* &}quot;x" denotes the circuit, A, B or C. "n" denotes the compressor number, 1, 2, 3, or 4.

Table 5 — EXV1 Board Inputs and Outputs

DESCRIPTION	INDUT/OUTDUT	UO TVDE	SCROLLING MARQUEE	CONNECTION POINT		
DESCRIPTION	INPUT/OUTPUT	I/O TYPE	POINT NAME	Pin	Notation	
					EXV1-J1	
Power (24 vac supply)	_	_	_	11	24 vac	
				12	Ground	
				EXV1-J4		
Local Equipment Network	_	_		1	+	
Local Equipment Network				2	G	
				3	_	
Circuit A Suction Gas Thermistor	SGTA	5k Thermistor	TEMPERATURE→CIR.A→SGT.A		EXV1-J3	
	Gain	OK THOMISTO	TEIM ENATORE YOURA YOURS		THA	
Circuit B Suction Gas Thermistor	ermistor SGTB 5k Thermistor		TEMPERATURE→CIR.B→SGT.B	EXV1-J3		
Official B ouction day memistor			TEMIL ENATONE FORMED FORMED	THB		
				l	EXV1-J2A	
				1		
Circuit A EXV	EXV-A	Stepper Motor	OUTPUTS→CIR.A→EXV.A	2		
				3		
				4		
					EXV1-J2B	
				1		
Circuit B EXV	EXV-B	Stepper Motor	OUTPUTS→CIR.B→EXV.B	2		
				3		
				4		

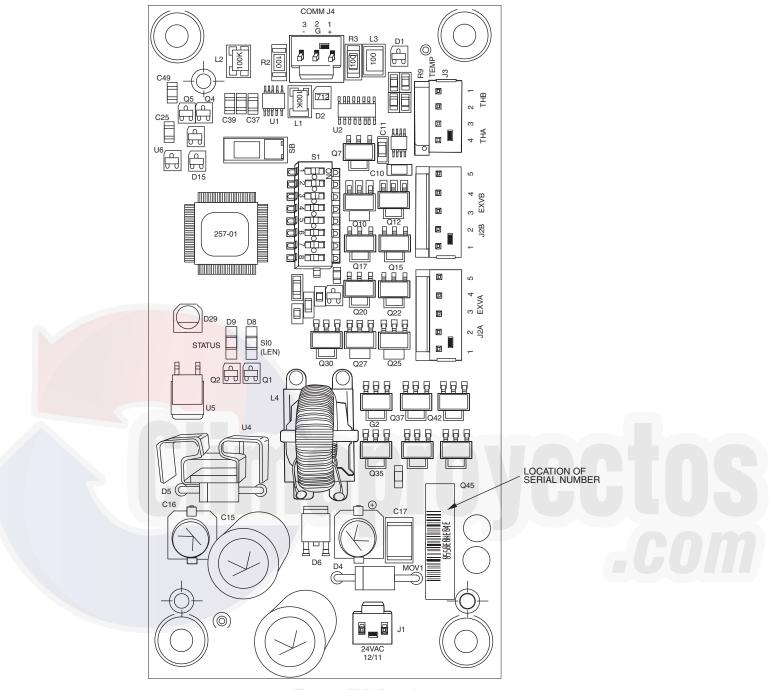


Fig. 5 — EXV Board

Fan Boards — At least one fan board is installed in each unit (see Fig. 6 and 7), except for 30RB080-190 units with the high-efficiency variable condenser fan (HEVCF) option; fan boards are not used with this option on these units. There are two types of fan boards, with and without an analog output signal for the low ambient head pressure controllers. If a unit does not have low ambient head pressure control installed, it will not have the analog connection terminals. The fan board responds to commands from the MBB and sends the MBB the results of the channels it monitors via the LEN. See below for fan board 1, 2 and 3 DIP switch addresses. See Tables 7-9 for inputs and outputs.

1	2	3	4	5	6	7	8
OFF	ON	OFF	OFF	ON	OFF	ON	OFF
						_	,
1	2	3	4	5	6	7	8
ON	ON	OFF	OFF	ON	OFF	ON	OFF
		-					
1	2	3	4	5	6	7	8
OFF	OFF	ON	OFF	ON	OFF	ON	OFF
	OFF 1 ON 1	OFF ON 1 2 ON ON 1 2	OFF ON OFF 1 2 3 ON ON OFF 1 2 3	OFF ON OFF OFF 1 2 3 4 ON ON OFF OFF 1 2 3 4	OFF ON OFF OFF ON 1 2 3 4 5 ON ON OFF OFF ON 1 2 3 4 5	OFF ON OFF OFF ON OFF 1 2 3 4 5 6 ON ON OFF OFF ON OFF 1 2 3 4 5 6	OFF ON OFF ON OFF ON 1 2 3 4 5 6 7 ON ON OFF OFF ON OFF ON 1 2 3 4 5 6 7

Table 6 — EXV2 Inputs and Outputs

DESCRIPTION	INPUT/OUTPUT	I/O TYPE	SCROLLING MARQUEE	CONN	ECTION POINT
DESCRIPTION	POINT NAM		POINT NAME	Pin	Notation
					EXV2-J1
Power (24 vac supply)	_	_	_	11	24 vac
				12	Ground
					EXV2-J4
Local Equipment Naturals			_	1	+
Local Equipment Network	_	_		2	G
				3	_
Circuit C Suction Gas Thermistor	SGTC	5k Thermistor TEMPERATURE → CIR.C → SGT.C			EXV2J3
Circuit C Suction Gas Thermistor	SGIC	5k Thermistor	TEMPERATURE→CIR.C→SGT.C	THA	
				ı	EXV2-J2A
				1	
Circuit C EXV	EXV-C	Stepper Motor	$OUTPUTS \rightarrow CIR.C \rightarrow EXV.C$	2	
				3	
				4	

NOTE: EXV2 inputs and outputs are only used on 30RB210-300.

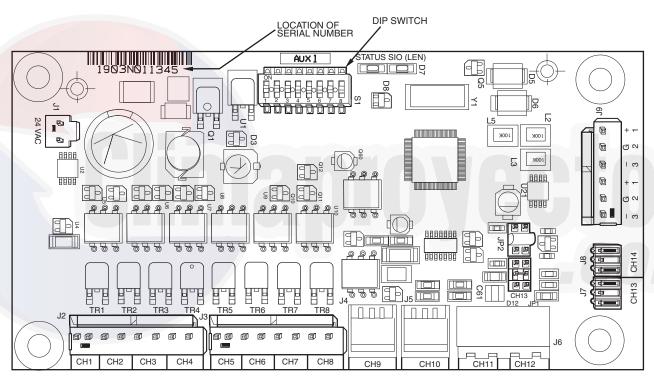


Fig. 6 — Fan Board (AUX 1) with Low Ambient Temperature Head Pressure Control

Table 7 — Fan Board 1 (AUX1, AUX2) Outputs*

DESCRIPTION	INPUT/OUTPUT	I/O TYPE	SCROLLING MARQUEE	CON	NECTION POINT
DESCRIPTION	INFOI/OUIFUI	"OTTPE	POINT NAME	Pin	Notation
					FB1-J1
Power (24 vac supply)	_	_	_	11	24 vac
				12	Ground
					FB1-J9
				+	
				G	
Local Equipment Network	_	_	_	-	
				+	
				G	
				-	
Circuit A Low Ambient					FB1-CH9
Temperature Head Pressure	MM-A†	0-10 VDC	$OUTPUTS { ightarrow} CIR.A { ightarrow} SPD.A$	+	
Control Speed Signal				-	
Circuit B Low Ambient Temperature					FB1-CH10
Head Pressure Control Speed Signal	MM-B†	0-10 VDC	$OUTPUTS \rightarrow CIR.B \rightarrow SPD.B$	+	
(sizes 060-150, 210-250)	· ·			-	
				†	FB1-J2-CH1
				(5	izes 060-110)
Outdoor For Motor 1	OEM4	TRIAC			FB1-J2-CH2 (
Outdoor Fan Motor 1	OFM1	24 VAC			120-150, 210-250) FB1-J2-CH3
					160-190, 275, 300,
<u> </u>				Dupl	ex sizes 315-390)
					FB1-J2-CH2
					sizes 060-110) FB1-J2-CH3
Outdoor Fan Motor 2	OFM2	TRIAC 24 VAC			120-150, 210-250)
					FB1-J2-CH4
					160-190, 275, 300, ex sizes 315-390)
					FB1-J2-CH3
		TRIAC 24 VAC			060,070,090-110)
				Φ	FB1-J3-CH5
Outdoor Fan Motor 3	OFM3				(size 080) FB1-J2-CH1
Outdoor Fair Motor 5	OI WIO				120-150, 210-250)
					FB1-J2-CH2
					160-190, 275, 300, ex sizes 315-390)
				•	FB1-J2-CH4
					es 060,070,130,
					150,210-250)
		TRIAC			FB1-J3-CH6 (size 080)
Outdoor Fan Motor 4	OFM4	24 VAC			FB1-J3-CH7
					sizes 090-110)
					FB1-J3-CH5 160-190, 275-300,
					ex sizes 315-390)
					FB1-J3-CH5
					sizes 090-110)
Outdoor Fan Motor 5	OFM5	TRIAC			FB1-J3-CH6 (120-150, 210-250)
Catago an motor o	J. 1010	24 VAC		`	FB1-J2-CH1
					160-190, 275-300,
					ex sizes 315-390)
					FB1-J3-CH6 sizes 090-110,
Outdoor Fan Motor 6	OFM6	TRIAC		16	0-190, 275-300,
Outdoor Fair Wolde 6	OFIVIO	24 VAC		Dupl	ex sizes 315-390)
					FB1-J3-CH7 120-150, 210-250)
		TRIAC		<u> </u>	FB1-J3-CH5
Outdoor Fan Motor 7	OFM7	24 VAC			120-150, 210-250)
		TRIAC		<u> </u>	FB1-J3-CH8
Outdoor Fan Motor 8	OFM8	111170			120-150, 210-250)

 $^{^*}$ Fan boards 1 and 2 will use the AUX1 board when the low ambient temperature head pressure control option is installed. * Supplied on AUX1 board only

NOTES:
1. Fan board 1 is used on 30RB060-390.
2. 24 vac TRIAC outputs may indicate 12-13 vac when output is de-energized.

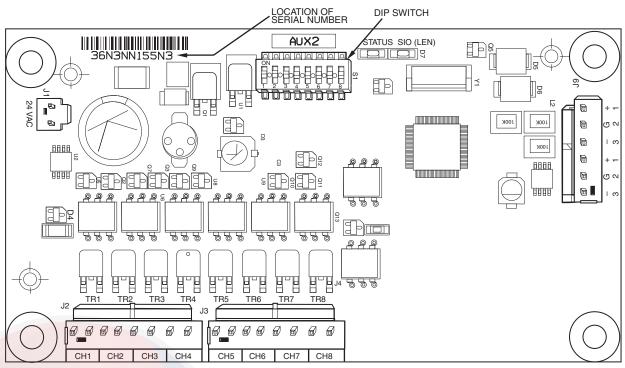


Fig. 7 — Fan Board (AUX 2) without Low Ambient Temperature Head Pressure Control

Table 8 — Fan Board 2 (AUX1, AUX2) Outputs*

DESCRIPTION	INPUT/OUTPUT	I/O TYPE	SCROLLING MARQUEE	CONNECTION POINT			
DESCRIPTION	INPUI/OUTPUI	1/O TTPE	POINT NAME	Pin	Notation		
					FB2-J1		
Power (24 vac supply)			\	11	24 vac		
				12	Ground		
					FB2-J9		
				+			
				G			
Local Equipment Network	-	_	_	-			
				+			
				G			
				-			
Circuit B Low Ambient Temperature		0-10 VDC			FB2-CH9		
Head Pressure Control Speed Signal	MM-B†		$OUTPUTS \rightarrow CIR.B \rightarrow SPD.B$	+			
(sizes 160-190, 275-300, 315-400)				-			
		TDIAC			B2-J2-CH2		
Outdoor Fan Motor 7	OFM7†	TRIAC 24 VAC			170, 315-345, 360B) B2-J2-CH3		
					275, 300, 360A, 390)		
					B2-J2-CH3		
Outdoor Fan Motor 8	OFM8	TRIAC 24 VAC			170, 315-345, 360B) B2-J2-CH4		
		24 7/10			275, 300, 360A, 390)		
					B2-J2-CH1		
Outdoor Fan Motor 9	OFM9	TRIAC 24 VAC			170, 315-345, 360B) B2-J2-CH2		
		24 VAC			275, 300, 360A, 390)		
					B2-J2-CH4		
Outdoor Fan Motor 10	OFM10	TRIAC 24 VAC			170, 315-345, 360B) B2-J3-CH5		
		24 VAC			275, 300, 360A, 390)		
Outdoor For Motor 11	OFM11	TRIAC		· · ·	B2-J2-CH1		
Outdoor Fan Motor 11	OFM11	24 VAC		(sizes 190,	275-300, 360A, 390)		
Outdoor Fan Motor 12	OFM12	TRIAC			B2-J3-CH6		
		24 VAC		(sizes 190,	275-300, 360A, 390)		

^{*}Fan boards 1 and 2 will use the AUX1 board when the low ambient temperature head pressure control option is installed. †Output only on units with low ambient temperature head pressure control installed (AUX1). NOTES:

^{1.} Fan board 2 used on 30RB160-190, 275-300, 315-390.

²⁴ vac TRIAC outputs may indicate 12-13 vac when output is de-energized.

Table 9 — Fan Board 3 (AUX1) Inputs and Outputs

DESCRIPTION	INPUT/OUTPUT	I/O TYPE	SCROLLING MARQUEE POINT NAME		ECTION POIN Unit Size)
			FOINT NAME	Pin	Notation
					FB3-J1
Power (24 vac supply)	_	_	_	11	24 vac
				12	Ground
					FB3-J9
				+	
Local Carriement Naturals				G -	
Local Equipment Network	_	_	_	+	
				G	
Circuit C Discharge Pressure Transducer	DPTC	Pressure Transducer (0-5 VDC)	PRESSURE→PRC.C→DP.C	FB3-J7-CH13	
Circuit C Suction Pressure Transducer	SPTC	Pressure Transducer (0-5 VDC)	PRESSURE → PRC.C → SP.C	FE	33-J8-CH14
Minimum Load Value Circuit C	MLV-C*	TRIAC	OUTPUTS→CIR.C→HGB.C		B3-J3-CH7
Circuit C Low Ambient				<u> </u>	es 210-300) FB3-CH9
Temperature Head Pressure	MM-C†	0-10 VDC	OUTPUTS→CIR.C→SPD.C	+	פו וס-טם ו
Control Speed Signal (sizes 210-300)	IVIIVI-O	0-10 400		F .	
(31263 210-300)					B3-J2-CH2
Outdoor Fan Motor 9	OFM9	TRIAC		(siz	es 210, 225)
Outdoor Fair Motor 9	OI WIS	24 VAC			B3-J2-CH3
					(size 250) B3-J2-CH3
Outdoor Fan Motor 10	OFM10	TRIAC		(siz	es 210, 225)
Outdoor Fail Motor 10	OFINITO	24 VAC			B3-J2-CH4 (
					(size 250) B3-J2-CH1
Outdoor Fan Motor 11	OFM11	TRIAC			es 210, 225)
Outdoor Fan Motor 11	OFWITI	24 VAC		`F	B3-J2-CH2 (
					(size 250) B3-J2-CH3
Outdoor For Motor 12	OFM10	TRIAC			es 210, 225)
Outdoor Fan Motor 12	OFM12	24 VAC		` F	B3-J2-CH4 (
					(size 250)
					B3-J2-CH1 (size 250)
Outdoor Fan Motor 13	OFM13	TRIAC		F	B3-J2-CH2
		24 VAC			(size 275) B3-J2-CH3
					(size 300)
					B3-J3-CH6
	051111	TRIAC			(size 250) B3-J2-CH3
Outdoor Fan Motor 14	OFM14	24 VAC			(size 275)
					B3-J2-CH4 (size 300)
					B3-J2-CH1
Outdoor Fan Motor 15	OFM15	TRIAC			(size 275)
		24 VAC			B3-J2-CH2 (size 300)
	+				B3-J2-CH4
Outdoor Fan Motor 16	OFM16	TRIAC			(size 275)
Suluson i an motor is		24 VAC			B3-J3-CH5 (size 300)
		TRIAC			(Size 300) B3-J2-CH1
Outdoor Fan Motor 17	OFM17	24 VAC			(size 300)
Outdoor Fan Motor 18	OFM18	TRIAC			B3-J3-CH6
Catagor Fair Wotor 10	5, 10, 10	24 VAC			(size 300)

^{*}Controls discharge and liquid line isolation soleniods for 30RB210-300 brine units. †Low ambient temperature head pressure control output is on AUX1 board only. NOTES:

Fan board 3 used on 30RB210-300.
 24 vac TRIAC outputs may indicate 12-13 vac when output is de-energized.

Reverse Rotation Board — The reverse rotation board monitors the three-phase electrical system to provide phase reversal, phase loss and under-voltage protection. See Fig. 8. The reverse rotation board has two LEDs (light-emitting diodes) and two adjustable dial settings. Under normal conditions, the upper LED will light up green. The lower LED is red and will flash (phase reversal) or turn on solid (phase loss and under-voltage) according to the conditions sensed.

DIAL SETTINGS — The reverse rotation board has two dials. See Fig. 8. The upper dial should be set to match the incoming three-phase voltage to the chiller with no compressors running. This dial must be adjusted for 208/230-v chillers operating on 208-v power supply. The dial should be adjusted to 200-v minimum setting for this case. The lower dial is used for trip delay and should be set fully counterclockwise to the minimum 0.1 second setting.

PHASE REVERSAL PROTECTION — The control monitors the three-phase power sequence supplied at terminals L1, L2, and L3. If the control senses an incorrect phase relationship, the relay contacts (11/14) on the board will open. The relay contacts will automatically reset when the correct phase sequence is applied.

PHASE LOSS AND UNDER-VOLTAGE PROTECTION—If the reverse rotation board senses that any one of the three phase inputs has no AC voltage or that any one phase has dropped more than 20% below the voltage dial setting, the relay contacts (11/14) on the board will open. Contacts will reset automatically when all three phases are present, in the correct sequence and are within the limits of the voltage dial setting.

LED STATUS	FUNCTION
Upper (green) LED on continuously	Relay contacts closed (normal operation)
Lower (red) LED blinking	Relay contacts open (phase reversal has occurred)
Lower (red) LED on continuously	Relay contacts open (phase loss or under-voltage has occurred)
Upper (green) LED off	Power not present at L1, L2, L3 (off)

NOTE: Normal operation of the reverse rotation board (for example, no faults are detected) results in a closed contact being applied to the MBB (plug J5A, channel 16B) through the closed 11/14 relay contact.

Enable-Off-Remote Contact Switch — This switch is installed in all units and provides the owner and service person with a local means of enabling or disabling the machine. It is a 3-position switch used to control the chiller. When switched to the Enable position the chiller is under its own control. Move the switch to the Off position to shut the chiller down. Move the switch to the Remote Contact position and a field-installed dry contact can be used to start the chiller. The contacts must be capable of handling a 24-vac, 20-mA load. In the Enable and Remote Contact (dry contacts closed) positions, the chiller is allowed to operate and respond to the scheduling configuration, CCN configuration and set point control.

Emergency On/Off Switch — This switch is installed in all units. The Emergency On/Off switch should only be used when it is required to shut the chiller off immediately. Power to the MBB, energy management module, and scrolling marquee display is interrupted when this switch is off and all outputs from these modules will be turned off.

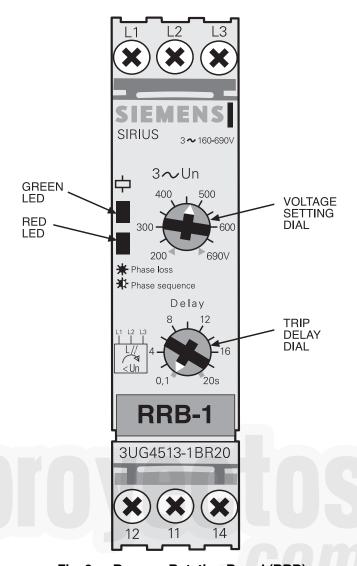


Fig. 8 — Reverse Rotation Board (RRB)

Energy Management Module (EMM) — The EMM is available as a factory-installed option or as a field-installed accessory. The EMM receives 4 to 20 mA inputs for the temperature reset, cooling set point reset and demand limit functions. The EMM also receives the switch inputs for the field-installed second stage 2-step or 3-step demand limit, ice done, occupancy overrides, and remote lockout functions. The EMM communicates the status of all inputs with the MBB, and the MBB adjusts the control point, capacity limit, and other functions according to the inputs received. The EMM generates a 0 to 10 vdc output that directly corresponds to the unit percent total capacity. Contacts indicating unit run status and shutdown status are provided. See Table 10 and Fig. 9.

⚠ CAUTION

Care should be taken when interfacing with other manufacturer's control systems due to possible power supply differences, full wave bridge versus half wave rectification, which could lead to equipment damage. The two different power supplies cannot be mixed. *Comfort*Link controls use half wave rectification. A signal isolation device should be utilized if incorporating a full wave bridge rectifier signal generating device is used.

Energy Management Module Heat Reclaim (EMM HR) — The EMM HR is available as a factory-installed option. The EMM HR communicates the status of all of the inputs with the MBB. The MBB then determines the

appropriate operating mode. Operating modes are: normal cooling, heat reclaim, and simultaneous one circuit cooling/one circuit heat reclaim. See Table 11 and Fig. 9.

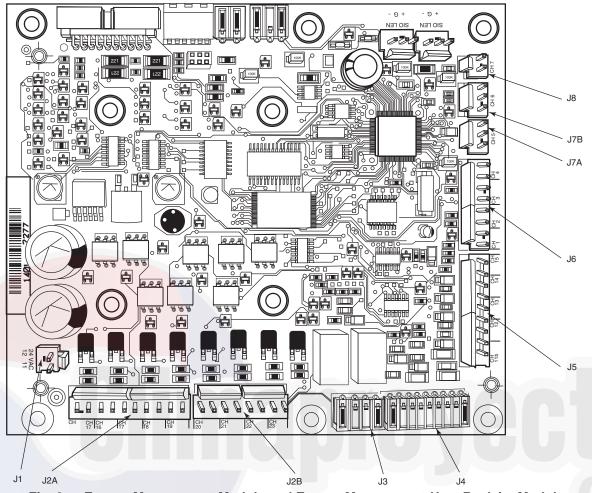


Fig. 9 — Energy Management Module and Energy Management Heat Reclaim Module

Table 10 — Energy Management Module (EMM) Inputs and Outputs

INPUT	DESCRIPTION	I/O TYPE	I/O POINT NAME	CONNECTION POINT
4-20 mA or 0-5 vdc Demand Limit	4-20 mA Demand Limit	0-5 vdc*	INPUTS→GEN.I→DMND	EMM-J7B-CH6
4-20 mA or 0-5 vdc Temperature Reset/Setpoint	4-20 mA Temperature Reset/ Set point	0-5 vdc*	INPUTS→GEN.I→RSET	EMM-J7A-CH5
Demand Limit SW2	Demand Limit Step 2	Switch Input	INPUTS→GEN.I→DLS2	EMM-J4-CH9
Ice Done	Ice Done Switch	Switch Input	INPUTS→GEN.I→ICE.D	EMM-J4-CH11A
Occupancy Override	Occupied Schedule Override	Switch Input	INPUTS→GEN.I→OCCS	EMM-J4-CH8
Remote Lockout Switch	Chiller Lockout	Switch Input	INPUTS→GEN.I→RLOC	EMM-J4-CH10
SPT	Space Temperature Thermistor	10k Thermistor	TEMPERATURE→UNIT→SPT	EMM-J6-CH2
OUTPUT	DESCRIPTION	I/O TYPE	I/O POINT NAME	CONNECTION POINT
% Total Capacity		0-10 vdc	OUTPUTS→GEN.O→CATO	EMM-J8-CH7
RUN R	Run Relay	Relay	OUTPUTS→GEN.O→RUN	EMM-J3-CH24
SHD R	Shutdown Relay	Relay	OUTPUTS→GEN.O→SHUT	EMM-J3-CH25

^{* 250} ohm, 1/2 watt resistor required for 4-20 mA input.

Table 11 — Energy Management Module Heat Reclaim (EMM HR) Inputs and Outputs

INPUT	DESCRIPTION	I/O TYPE	I/O POINT NAME	CONNECTION POINT	
PD.B	Circuit B Pumpdown Pressure Transducer	Pressure Transducer	PRESSURE ightarrow CIR.B ightarrow PD.B	EMM-J8-CH6	
PD.A	Circuit A Pumpdown Pressure Transducer	Pressure Transducer	PRESSURE ightarrow CIR.A ightarrow PD.A	EMM-J8-CH5	
HRS.B	Circuit B Liquid Subcooling	_	TEMPERATURE ightarrow CIR.B ightarrow HRS.B	_	
HRS.A	Circuit A Liquid Subcooling	_	TEMPERATURE→CIR.A→HRS.A	_	
HRT.B	Circuit B Liquid Temperature	Temperature	TEMPERATURE→CIR.B→HRT.B	EMM-J5-CH4	
HRT.A	Circuit A Liquid Temperature	Temperature	TEMPERATURE→CIR.A→HRT.A	EMM-J5-CH3	
HEWT	Heat Reclaim Entering Fluid	Temperature	TEMPERATURE→UNIT→HEWT	EMM-J5-CH2	
HLWT	Heat Reclaim Leaving Fluid	Temperature	TEMPERATURE ightarrow UNIT ightarrow HLWT	EMM-J5-CH1	
C.FLO	Condenser Flow Switch Status	Switch	INPUTS→GEN.I→C.FLO	EMM-J5-CH15	
	Power (24 vac supply)	_		EMM-J1-CH11,12	
_	Local Equipment Network	_		EMM-J9	
OUTPUT	DESCRIPTION	I/O TYPE	I/O POINT NAME	CONNECTION POINT	
OUTPUT	DESCRIPTION Condenser 0-10 VDC Water Valve Output	I/O TYPE 0-10 VDC	I/O POINT NAME —	CONNECTION POINT EMM-J8-CH7	
OUTPUT CND.P			I/O POINT NAME — OUTPUTS→GEN.O→CND.P		
	Condenser 0-10 VDC Water Valve Output	0-10 VDC	-	EMM-J8-CH7	
CND.P	Condenser 0-10 VDC Water Valve Output Heat Reclaim Condenser Pump Status	0-10 VDC Contactor	— OUTPUTS→GEN.O→CND.P	EMM-J8-CH7 EMM-J2-CH16	
CND.P CN.HT	Condenser 0-10 VDC Water Valve Output Heat Reclaim Condenser Pump Status Heat Reclaim Condenser Heater	0-10 VDC Contactor Contactor	— OUTPUTS→GEN.O→CND.P OUTPUTS→GEN.O→CN.HT	EMM-J8-CH7 EMM-J2-CH16 EMM-J2-CH17	
CND.P CN.HT HR2.A	Condenser 0-10 VDC Water Valve Output Heat Reclaim Condenser Pump Status Heat Reclaim Condenser Heater Circuit A, Leaving Air-Cooled Cond Solenoid	0-10 VDC Contactor Contactor Contactor	— OUTPUTS→GEN.O→CND.P OUTPUTS→GEN.O→CN.HT OUTPUTS→CIR.A→HR2.A	EMM-J8-CH7 EMM-J2-CH16 EMM-J2-CH17 EMM-J2-CH18	
CND.P CN.HT HR2.A HR2.B	Condenser 0-10 VDC Water Valve Output Heat Reclaim Condenser Pump Status Heat Reclaim Condenser Heater Circuit A, Leaving Air-Cooled Cond Solenoid Circuit B, Leaving Air-Cooled Cond Solenoid	0-10 VDC Contactor Contactor Contactor Contactor	— OUTPUTS→GEN.O→CND.P OUTPUTS→GEN.O→CN.HT OUTPUTS→CIR.A→HR2.A OUTPUTS→CIR.B→HR2.B	EMM-J8-CH7 EMM-J2-CH16 EMM-J2-CH17 EMM-J2-CH18 EMM-J2-CH19	
CND.P CN.HT HR2.A HR2.B HR3.A	Condenser 0-10 VDC Water Valve Output Heat Reclaim Condenser Pump Status Heat Reclaim Condenser Heater Circuit A, Leaving Air-Cooled Cond Solenoid Circuit B, Leaving Air-Cooled Cond Solenoid Circuit A, Entering Water-Cooled Cond Solenoid	0-10 VDC Contactor Contactor Contactor Contactor Contactor Contactor	— OUTPUTS→GEN.O→CND.P OUTPUTS→GEN.O→CN.HT OUTPUTS→CIR.A→HR2.A OUTPUTS→CIR.B→HR2.B OUTPUTS→CIR.A→HR3.A	EMM-J8-CH7 EMM-J2-CH16 EMM-J2-CH17 EMM-J2-CH18 EMM-J2-CH19 EMM-J2-CH20	
CND.P CN.HT HR2.A HR2.B HR3.A HR3.B	Condenser 0-10 VDC Water Valve Output Heat Reclaim Condenser Pump Status Heat Reclaim Condenser Heater Circuit A, Leaving Air-Cooled Cond Solenoid Circuit B, Leaving Air-Cooled Cond Solenoid Circuit B, Entering Water-Cooled Cond Solenoid	0-10 VDC Contactor Contactor Contactor Contactor Contactor Contactor Contactor	— OUTPUTS→GEN.O→CND.P OUTPUTS→GEN.O→CN.HT OUTPUTS→CIR.A→HR2.A OUTPUTS→CIR.B→HR2.B OUTPUTS→CIR.A→HR3.A OUTPUTS→CIR.B→HR3.B	EMM-J8-CH7 EMM-J2-CH16 EMM-J2-CH17 EMM-J2-CH18 EMM-J2-CH19 EMM-J2-CH20 EMM-J2-CH21	
CND.P CN.HT HR2.A HR2.B HR3.A HR3.B HR4.A	Condenser 0-10 VDC Water Valve Output Heat Reclaim Condenser Pump Status Heat Reclaim Condenser Heater Circuit A, Leaving Air-Cooled Cond Solenoid Circuit B, Leaving Air-Cooled Cond Solenoid Circuit A, Entering Water-Cooled Cond Solenoid Circuit B, Entering Water-Cooled Cond Solenoid Circuit A, Leaving Water-Cooled Cond Solenoid	0-10 VDC Contactor Contactor Contactor Contactor Contactor Contactor Contactor Contactor Contactor	— OUTPUTS→GEN.O→CND.P OUTPUTS→GEN.O→CN.HT OUTPUTS→CIR.A→HR2.A OUTPUTS→CIR.B→HR2.B OUTPUTS→CIR.A→HR3.A OUTPUTS→CIR.B→HR3.B OUTPUTS→CIR.A→HR4.A	EMM-J8-CH7 EMM-J2-CH16 EMM-J2-CH17 EMM-J2-CH18 EMM-J2-CH19 EMM-J2-CH20 EMM-J2-CH21 EMM-J2-CH21	

Local Equipment Network — Information is transmitted between modules via a 3-wire communication bus or LEN (Local Equipment Network). External connection to the LEN bus is made at TB3.

Board Addresses — All boards (except the main base board and the energy management module) have 8-position DIP switches. Addresses for all boards are listed with the input/output tables for each board.

Control Module Communication

RED LED — Proper operation of the control boards can be visually checked by looking at the red status LEDs (light-emitting diodes). When operating correctly, the red status LEDs will blink in unison at a rate of once every 2 seconds. If the red LEDs are not blinking in unison, verify that correct power is being supplied to all modules. Be sure that the main base board (MBB) is supplied with the current software. If necessary, reload current software. If the problem still persists, replace the MBB. A red LED that is lit continuously or blinking at a rate of once per second or faster indicates that the board should be replaced.

GREEN LED — All boards have a green LEN (Local Equipment Network) (SIO) LED which should be blinking whenever power is on. If the LEDs are not blinking as described check LEN connections for potential communication errors at the board connectors. See Table 3 for LEN connector designations. A 3-wire bus accomplishes communication between modules.

These 3 wires run in parallel from module to module. The J9A connector on the MBB provides communication directly to the scrolling marquee display or the NavigatorTM display module.

YELLOW LED — The MBB has one yellow LED. The Carrier Comfort Network® (CCN) LED will blink during times of network communication.

Carrier Comfort Network (CCN) Interface — All 30RB units can be connected to the CCN, if desired. The communication bus wiring is a shielded, 3-conductor cable with drain wire and is field supplied and installed. The system elements are connected to the communication bus in a daisy chain arrangement. The positive pin of each system element communication connector must be wired to the positive pins of the system elements on either side of it, that is also required for the negative and signal ground pins of each system element. Wiring connections for CCN should be made at TB3. Consult the CCN Contractor's Manual for further information. See Fig. 10.

NOTE: Conductors and drain wire must be 20 AWG (American Wire Gage) minimum stranded, tinned copper. Individual conductors must be insulated with PVC, PVC/nylon, vinyl, Teflon*, or polyethylene. An aluminum/polyester 100% foil shield and an outer jacket of PVC, PVC/nylon, chrome vinyl, or Teflon with a minimum operating temperature range of –20 C to 60 C is required. See Table 12 for recommended wire manufacturers and part numbers.

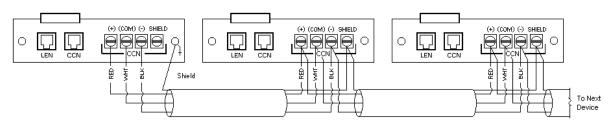


Fig. 10 — ComfortLink CCN Communication Wiring

Table 12 — CCN Communication Bus Wiring

MANUFACTURER	PART NUMBER							
WANUFACTURER	Regular Wiring	Plenum Wiring						
Alpha	1895	_						
American	A21451	A48301						
Belden	8205	884421						
Columbia	D6451	_						
Manhattan	M13402	M64430						
Quabik	6130	_						

When connecting to a CCN communication bus, use a color-coding scheme for the entire network to simplify the installation. It is recommended that red be used for the signal positive, black for the signal negative, and white for the signal ground. Use a similar scheme for cables containing different colored wires.

At each system element, tie the shields of its communication bus cables together. If the communication bus is entirely within one building, the resulting continuous shield must be connected to a ground at one point only. If the communication bus cable exits from one building and enters another, the shields must be connected to grounds at the lightning suppressor in each building where the cable enters or exits the building (one point per building only). To connect the unit to the network:

- 1. Turn off power to the control box.
- 2. Cut the CCN wire and strip the ends of the red (+), white (ground), and black (-) conductors. (Substitute appropriate colors for different colored cables.)
- Connect the red wire to (+) terminal on TB3 of the plug, the white wire to COM terminal, and the black wire to the (-) terminal.
- 4. The RJ14 CCN connector on TB3 can also be used, but is only intended for temporary connection (for example, a laptop computer running Service Tool).

IMPORTANT: A shorted CCN bus cable will prevent some routines from running and may prevent the unit from starting. If abnormal conditions occur, disconnect the CCN bus. If conditions return to normal, check the CCN connector and cable. Run new cable if necessary. A short in one section of the bus can cause problems with all system elements on the bus.

Configuration Options — The unit Remote-OFF-Enable switch must be in the OFF position while making changes. If the unit switch is not in the OFF position, REJECTED may be displayed on the scrolling marquee display.

MINIMUM LOAD CONTROL (*Configuration*→*UNIT* →*HGBP*) reduces the capacity of the 30RB chiller below the lowest standard capacity step by use of hot gas bypass. This capacity step reduction provides more precise control of the leaving water temperature. The minimum load valve accessory cannot be used on units configured for brine as the cooler fluid type (*Configuration*→ *SERV*→*FLUD*). Refer to Brine Chiller Operation for additional information.

Minimum Load Control can be configured in three different ways. If Minimum Load Control is not used, *HGBP* must be set to **0**. If *HGBP* is set to **1**, the control will activate the minimum load control valve when the machine is started only. This will be the first step of capacity. If *HGBP* is set to **2**, all stages of capacity can utilize the minimum load control valve. If *HGBP* is set to **3**, the minimum load control valve will be used only when the circuit has a high pressure override active. This will reduce the capacity of the circuit.

RAMP LOADING (*Configuration* → *OPTN* → *RL.S*) limits the rate of change of leaving fluid temperature. If the unit is in

a Cooling mode and configured for Ramp Loading, the control makes 2 comparisons before deciding to change stages of capacity. The control calculates a temperature difference between the control point and leaving fluid temperature. If the difference is greater than 4° F (2.2° C) and the rate of change (°F or °C per minute) is more than the configured Cool Ramp Loading (*Setpoints*→*COOL*→*CRMP*), the control does not allow any changes to the current stage of capacity.

MINUTES OFF TIME (*Configuration* \rightarrow *OPTN* \rightarrow *DELY*) is a time delay added to the start when the machine is commanded ON. This is a field configurable item from 1 to 15 minutes. The factory default is 1 minute. This feature is useful when multiple units are installed. Staggering the start will reduce the inrush potential.

Dual Chiller Control — The dual chiller routine is available for the control of two parallel units supplying chilled fluid on a common loop. This control is designed for a parallel fluid flow arrangement only. One chiller must be configured as the master chiller, the other as the slave chiller. An additional leaving fluid temperature thermistor (dual chiller LWT) must be installed in the common chilled water piping as described in the Installation Instructions for both the master and slave chillers. See the Field Wiring section in the 30RB Installation Instructions for dual chiller LWT sensor control wiring. A chilled water flow switch is factory-installed for each chiller.

Parallel chiller control with dedicated pumps is recommended. Chiller must start and stop its own water pump located on its own piping. If pumps are not dedicated for each chiller, chiller isolation valves are required: each chiller must open and close its own isolation valve through the control (valve shall be connected to the pump outputs). Pump Control is enabled as described in the Cooler Pump Control section on page 29. One additional parameter is set for the dual chiller control. Lag Unit Pump Select (Configuration \rightarrow RSET) \rightarrow LAGP) allows the user to configure the control to energize the pump for the lag chiller once the unit enters an occupied time period or delay the control until the lag chiller is started. It is recommended that this parameter be set to 0, OFF IF UNIT STOPPED. The control of the slave chiller is directed through commands emitted by the master chiller. The slave chiller has no action in master/slave operations; it shall only verify that CCN communication with its master is present. See the Dual Chiller Sequence of Operation section on page 45.

Use dual chiller control to designate a lead chiller between the master and slave chiller. Configure the Lead/Lag Balance Select (*Configuration→RSET→LLBL*) to ENBL to base the selection on the Lead/Lag Balance Delta (*Configuration→RSET→LLBD*) between the master and slave run hours. If the run hour difference between the master and the slave remains less than *LLBD*, the chiller designated as the lead will remain the lead chiller. The Lead/Lag changeover between the master and the slave chiller due to hour balance will occur during chiller operating odd days, such as day 1, day 3, and day 5 of the month, at 12:00 a.m. If a lead chiller is not designated, the master chiller will always be designated the lead chiller.

The dual chiller control algorithm has the ability to delay the start of the lag chiller in two ways. The Lead Pulldown Time (*Configuration*—*RSET*—*LPUL*) provides a field configurable time delay of 0 to 60 minutes. This time delay gives the lead chiller a chance to remove the heat that the chilled water loop picked up while being inactive during an unoccupied period. The Lead Pulldown Time parameter is a one-time time delay initiated after starting the lead chiller, manually or by a schedule, before checking whether to start an additional chiller. This routine provides the lead chiller an opportunity to pull down the loop temperature before starting another chiller. The second time delay, Lead/Lag Delay (*Configuration*—*RSET*—*LLDY*) is a time delay imposed between the last stage of the lead chiller and the start of the lag chiller. This prevents enabling the lag chiller until the lead/lag delay timer has expired. See Tables 13 and 14.

Table 13 — Configuring the Master Chiller

		Table 13 –	 Configuring the Mas 	ter Chiller
MODE	KEYPAD ENTRY	DISPLAY	ITEM EXPANSION	COMMENT
CONFIGURATION	ENTER	DISP		
	+	UNIT		
	+	SERV		
	+	OPTN		
	ENTER	CCNA	CCN Address	Confirm address of chiller. The master and slave chiller must have different addresses.
	ENTER	1		Factory default address is 1.
	ESCAPE	CCNA		
	+	CCNB	CCN Bus Number	Confirm the bus number of the chiller. The master and slave
	ENTER	0		chiller must be on the same bus. Factory default is 0.
	ESCAPE	CCNB		·
	ESCAPE	OPTN		
	+	RSET	Reset Cool and Heat Tmp	
	ENTER	CRST	Cooling Reset Type	
	↓ x5	MSSL	Master/Slave Select	
	ENTER	0	Disable	
	ENTER	0	Disable	Flashing to indicate Edit mode. May require Password.
	1	1	Master	Use up arrows to change value to 1.
	ENTER	1	- Indice.	Accepts the change.
	ESCAPE	MSSL		Accepte the change.
		SLVA	Slave Address	
	ENTER	1	Siave Address	
	ENTER	1		Flashing to indicate Edit mode.
	<u> </u>	2		Use up arrows to change value to 2. This address must match the address of the slave chiller.
	ENTER	2		Accepts the change.
	ESCAPE	SLVA		
	+	LLBL	Lead/Lag Balance Select	
	ENTER	ENBL		Factory Default is ENBL
	ESCAPE	LLBL		
	+	LLBD	Lead/Lag Balance Delta	
	ENTER	168		Factory Default is 168.
	ESCAPE	LLBD		
	+	LLDY	Lead/Lag Start Delay	
	ENTER	10		Factory Default is 10.
	ESCAPE	LLDY		
	+	LAGP	Lag Unit Pump Select	
	ENTER	0	Off if U Stp	Factory Default is 0, Off if unit is stopped. Master and slave chiller must be configured to the same value.
	ESCAPE	LAGP		
	+	LPUL	Lead Pulldown Time	
	ENTER	0		Factory Default is 0.
	ESCAPE			
	ESCAPE			At mode level.
OPERATING MODES	ENTER	SLCT		
	ENTER	OPER	Operating Control Type	
	ENTER	0	Switch Control	Master chiller should be configured for job requirements, Switch Control, Time Schedule, or CCN.
	ESCAPE			At mode level.

NOTE: **Bold** values indicate sub-mode level.

Table 14 — Configuring the Slave Chiller

MODE	KEYPAD ENTRY	DISPLAY	ITEM EXPANSION	COMMENT
CONFIGURATION	ENTER	DISP		
	•	UNIT		
	↓	SERV		
	+	OPTN		
	ENTER	CCNA	CCN Address	Confirm address of chiller. The master and slave chille must have different addresses.
	ENTER	1		Factory default address is 1. The slave chiller address must match what was programmed in the Master Chille SLVA item.
	ENTER	1		Flashing to indicate Edit Mode.
	1	2		This item must match Master Chiller SLVA item.
	ENTER	2		Accepts the change.
	ESCAPE	CCNA		
	+	CCNB	CCN Bus Number	Confirm the bus number of the chiller. The master and slave chiller must be on the same bus.
	ENTER	0		Factory default bus number is 0.
	ESCAPE	CCNB		
	ESCAPE	OPTN		
	+	RSET	Reset Cool and Heat Tmp	
	ENTER	CRST	Cooling Reset Type	
	↓ x5	MSSL	Master/Slave Select	
	ENTER	0	Disable	
	ENTER	0	Disable	Flashing to indicate Edit mode. May require Password
	1	2	Slave	Use up arrows to change value to 2.
	ENTER	2		Accepts the change.
	ESCAPE	MSSL		
	+	SLVA	Slave Address	Not required.
	+	LLBL	Lead/Lag Balance Select	Not required.
	+	LLBD	Lead/Lag Balance Delta	Not required.
	+	LLDY	Lead/Lag Start Delay	Not required.
	+	LAGP	Lag Unit Pump Select	Must be configured to the same value as the master chiller.
	+	LPUL	Lead Pulldown Time	Not required.
	ESCAPE			
	ESCAPE			At mode level
OPERATING MODES	ENTER	SLCT		
	ENTER	OPER	Operating Control Type	
	ENTER	0	Switch Control	
	ENTER	0		Flashing to indicate Edit Mode.
	1	2	CCN Control	Use up arrows to change value to 2. NOTE: Slave chiller must be configured for CCN.
	ENTER	2		Accepts the value.
	ESCAPE	OPER		
	ESCAPE			At mode level

NOTE: **Bold** values indicate sub-mode level.

The Lag Unit Pump Select configuration must be set consistently. If pump control is NOT being used, set *Configuration* $\rightarrow RSET \rightarrow LAGP$ to 1. If pump control IS being used, set *Configuration* $\rightarrow RSET \rightarrow LAGP$ to 0, which is the default value. This must be set in both the master and slave chillers, and it must be consistent in both.

Capacity Control — The control system cycles compressors and minimum load valve solenoids (if equipped) to maintain the user-configured leaving chilled fluid temperature set point. Entering fluid temperature is used by the main base board (MBB) to determine the temperature drop across the cooler and is used in determining the optimum time to add or subtract capacity stages. Entering fluid temperature, space temperature (requires additional sensor), or outdoor-air temperature reset features can automatically reset the leaving chilled fluid temperature set point. It can also be reset from an external 4 to 20-mA signal (requires energy management module).

The control has an automatic lead-lag feature built in for circuit and compressor starts. If enabled, the control will determine which circuit (*Configuration* \rightarrow *OPTN* \rightarrow *LLCS*=0) and compressor to start to even the wear. The compressor wear factor (combination of starts and run hours) is used to determine which compressor starts.

Compressor Wear Factor = (Compressor Starts) + 0.1 (Compressor Run Hours)

In this case, the circuit with the lowest average compressor wear factor (the average of the wear factors of all available compressors in the circuit) is the circuit that starts first. The compressor within the circuit with the lowest wear factor is the first to start. If the automatic lead-lag function for the circuit is not enabled [Configuration \to OPTN \to LLCS=1 (Circuit A leads), 2 (Circuit B leads), or 3 (Circuit C leads)], then the selected circuit will be the first to start. Again, the compressor with the lowest wear factor within the circuit will be the first to start. If Minimum Load Control is enabled (Configuration \to UNIT \to HGBP=1), the valve will be operational only during the first stage of cooling.

Once the lead compressor has been started, the lag compressors will be determined by the wear factor and loading sequence selected. If equal loading is selected, (Configura $tion \rightarrow OPTN \rightarrow LOAD = 0$), the circuit with the lowest average wear factor for the available compressors will start next, with the compressor with the lowest wear factor starting. The control will attempt to keep all circuits at approximately the same number of compressors ON. For this option to function properly, all circuits must have the same number of compressors available. If a circuit compressor is not available due to an alarm condition or demand limit, the capacity staging will change to staged. If staged loading is selected, (*Configuration* \rightarrow *OPTN* \rightarrow *LOAD*=1), the started circuit will continue to turn on compressors according to the lowest wear factor until all are on, then start the next circuit with the lowest average wear factor. If Minimum Load Control is enabled for close control (*Configuration* $\rightarrow UNIT \rightarrow HGBP=2$), the valve will be

available at all stages for better temperature control. If Minimum Load Control is enabled for high ambient control (*Configuration* \rightarrow *UNIT* \rightarrow *HGBP*=3), the valve will be used only when a high pressure override is active for that circuit.

The electronic expansion valves provide a controlled startup. During start-up, the low pressure logic in the lead circuit will be ignored for 5 minutes to allow for the transient changes during start-up. As additional stages of compression are required, the processor control will add them. The following example is based on a 30RB225 machine, which has three 25-ton compressors in each circuit. See Table 15.

Each example below has different configurations and is intended to illustrate the loading sequences possible for normal operation.

In Example 1 (Table 16), assume the following configurations are in place:

Configuration→*UNIT*→*HGBP*=1.. Minimum Load Control installed and enabled for Start-Up Only

Configuration→*OPTN*→*LOAD*=**0** . . . Equal Circuit Loading *Configuration*→*OPTN*→*LLCS*=**0** . . Automatic Circuit Select

Since Circuit A has the lowest average wear factor, it will be the lead circuit. Within the circuit, compressor A3 has the lowest wear factor and will start first with Minimum Load Control ON. The next stage will turn OFF the minimum load control. Stage 3 will start another circuit because of the Equal Circuit Loading configuration. The next circuit with the lowest wear factor is Circuit B, and the compressor with the lowest wear factor is B2. The next stage will be a circuit C compressor. The process continues until all compressors are ON. See Table 16.

In Example 2 (Table 17), assume the compressor starts and run hours are the same as in the previous example and the following configurations are in place:

Configuration→UNIT→HGBP=1.. Minimum Load Control installed and enabled for Start-Up Only

Configuration→OPTN→LOAD=1 . . Staged Circuit Loading Configuration→OPTN→LLCS=0 . . Automatic Circuit Select

Since Circuit A has the lowest average wear factor, it will be the lead circuit. Within the circuit, compressor A3 has the lowest wear factor and will start first with Minimum Load Control ON. The next stage will turn OFF the minimum load control. Stage 3 will start a compressor in the same circuit because of the Staged Circuit Loading configuration. Compressor A2 has the next lowest wear factor and will be started next. Compressor A3 will be next to start. Since all compressors in Circuit A are ON, the next stage will start another circuit. Of the remaining circuits, Circuit B has the lowest wear factor, and the compressor with the lowest wear factor is B2. All of the Circuit B compressors will be started in the same manner as Circuit A. Once all Circuit B compressors are ON, then Circuit C will be started. The process continues until all compressors are ON. See Table 17.

Table 15 — Compressor Starts and Run Hours

COMPRESSOR	COMPRESSOR STARTS		WEAR FACTOR	CIRCUIT AVERAGE WEAR FACTOR				
A1	25	249	49.9					
A2	22	237	45.7	44.8				
А3	26	128	38.8					
B1	41	453	86.3					
B2	38	138	51.8	67.6				
В3	35	297	64.7					
C1	93	103	103.3					
C2	57	98	66.8	80.3				
C3	61	99	70.9					

Table 16 — Compressor Stages and Circuit Cycling, Example 1

	TOTAL		CIRC	CUIT A				CIRC	UIT B				CIRC	UIT C		
STAGE	CAP.	Cir. Cap.	MLC	A 1	A 2	А3	Cir. Cap.	MLC	B1	B2	В3	Cir. Cap.	MLC	C1	C2	СЗ
0	0	0					0					0				
1	8	24	Х			Х	0					0				
2	11	33				Х	0					0				
3	22	33				Х	33			Х		0				
4	33	33				Х	33			Х		33			Х	
5	44	66			Х	Х	33			Х		33			Х	
6	55	66			Х	Х	66			Х	Х	33			Х	
7	66	66			Х	Х	66			Х	Χ	66			Х	Х
8	77	100		Х	Х	Х	66			Х	Χ	66			Х	Х
9	88	100		Х	Х	Х	100		Х	Х	Х	66			Х	X
10	100	100		Х	Х	Х	100		Х	Х	Χ	100		Х	Х	Х

LEGEND

MLC — Minimum Load Control

NOTES

- Total Cap. (Total Unit Capacity) and Cir. Cap. (Circuit Capacity) are approximate percentage values.
- Example is to determine minimum load control, staged circuit loading, and automatic circuit select.

Table 17 — Compressor Stage and Circuit Cycling, Example 2

	TOTAL		CIR	CUIT A			CIRCUIT B					CIRCUIT C					
	STAGE	CAP.	Cir. Cap.	MLC	A 1	A2	А3	Cir. Cap.	MLC	B1	B2	В3	Cir. Cap.	MLC	C1	C2	СЗ
0	0	0					0					0					
1	8	24	Х			Х	0					0					
2	11	33				Х	0					0					
3	22	66			Х	Х	0					0					
4	33	100		Х	Х	Х	0					0					
5	44	100		Х	Х	Х	33			Х		0					
6	55	100		Х	Х	Х	66			Х	Х	0					
7	66	100		Х	Х	Х	100		Х	Х	Х	0					
8	77	100		Х	Х	Х	100		Х	Х	Х	33				Х	
9	88	100		Χ	Х	Х	100		Х	Х	Х	66			X	Х	
10	100	100		Χ	Х	Х	100		Х	Х	Х	100		Χ	X	X	

LEGEND

MLC — Minimum Load Control

In Example 3 (Table 18), assume the following configurations are in place:

Configuration→**UNIT**→**HGBP**=1 . . Minimum Load Control installed and enabled for Start-Up Only

Configuration→OPTN→LOAD=0... Equal Circuit Loading Configuration→OPTN→LLCS=2......Circuit B Leads

Since Circuit B has been selected, it will be the lead circuit. Within the circuit, compressor B2 has the lowest wear factor and will start first with Minimum Load Control ON. The next stage will turn OFF the minimum load control. Stage 3 will start another circuit because of the Equal Circuit Loading configuration. Comparing Circuit A and C, the circuit with the lowest average wear factor is Circuit A, and the compressor with the lowest wear factor is A3. The next stage will be a circuit C compressor. The process continues until all compressors are ON. See Table 18.

In Example 4 (Table 19), assume the compressor starts and run hours are the same as in the first example and the following configurations are in place:

Configuration→*UNIT*→*HGBP*=1 . . Minimum Load Control installed and enabled for Start-Up Only

Configuration→OPTN→LOAD=1...Staged Circuit Loading Configuration→OPTN→LLCS=3.....Circuit C Leads

NOTES:

- Total Cap. (Total Unit Capacity) and Cir. Cap. (Circuit Capacity) are approximate percentage values.
- Example is to determine minimum load control, staged circuit loading, and automatic circuit select.

Since Circuit C has been selected, it will be the lead circuit. Within the circuit, compressor C2 has the lowest wear factor and will start first with Minimum Load Control ON. The next stage will turn OFF the minimum load control. Stage 3 will start a compressor in the same circuit because of the Staged Circuit Loading configuration. Compressor C3 has the next lowest wear factor and will be started next. Compressor C1 will be next to start. Since all compressors in Circuit C are ON, the next stage will start another circuit. Of the remaining circuits, Circuit A has the lowest wear factor, and the compressor with the lowest wear factor is A3. All of the Circuit A compressors will be started in the same manner as Circuit C. Once all Circuit A compressors are ON, then Circuit B will be started. The process continues until all compressors are ON. See Table 19.

If the circuit capacity is to be reduced, the compressor with the highest wear factor will be shut off first (in most cases). With Equal Circuit Loading, stages will be removed from each circuit, following the same criteria used in the loading sequence, but in the opposite order. Shown in Table 19 based on the current wear factor in the opposite to the loading sequence shown above, the compressor with the highest wear factor will be removed first. When Staged Circuit Loading is selected, the capacity from the last lag circuit will be removed first.

Table 18 — Compressor Stage and Circuit Cycling, Example 3

CTACE	TOTAL		CIRCUI	ΤA				CIRCUI	ТВ				CIRCUI	тс		
STAGE	CAP.	Cir. Cap.	MLC	A 1	A2	A3	Cir. Cap.	MLC	B1	B2	В3	Cir. Cap.	MLC	C1	C2	C3
0	0	0					0					0				
1	8	0	Х				24	Х		Х		0				
2	11	0					33			Х		0				
3	22	33				Х	33			Х		0				
4	33	33				Х	33			Х		33			Χ	
5	44	33				Х	66			Х	Х	33			Χ	
6	55	66			Х	Х	66			Х	Х	33			Χ	
7	66	66			Х	Х	66			Х	Х	66			Χ	Х
8	77	66		·	Х	Х	100		Х	Х	Х	66			Χ	Х
9	88	100		Х	Х	Х	100		Х	Х	Х	66			Х	Х
10	100	100		Х	Х	Х	100		Х	Χ	Х	100		Х	Χ	Х

LEGEND

MLC — Minimum Load Control

NOTES:

- Total Cap. (Total Unit Capacity) and Cir. Cap. (Circuit Capacity) are approximate percentage values.
- Example is to determine minimum load control, staged circuit loading, and automatic circuit select.

Table 19 — Compressor Stage and Circuit Cycling, Example 4

STAGE	TOTAL		CIRCUIT A				CIRCUI	ΤВ			CIRCUIT C					
STAGE	CAP.	Cir. Cap.	MLC	A1	A2	А3	Cir. Cap.	MLC	B1	B2	В3	Cir. Cap.	MLC	C1	C2	СЗ
0	0	0					0					0				
1	8	0					0					24	Х			Х
2	11	0					0					33				Х
3	22	0					0					66			Х	Х
4	33	0					0					100		Х	Х	Х
5	44	33				Х	0					100		Х	Х	Х
6	55	66			Х	Х	0					100		Х	Х	Х
7	66	100		Χ	X	Χ	0					100		X	Χ	X
8	77	100		Х	Х	Х	33			Х		100		Х	Х	Х
9	88	100		Х	Х	Х	66			Х	Х	100		Х	Х	Х
10	100	100		Х	Х	Х	100		Х	Х	Х	100		Х	Х	Х

LEGEND

MLC — Minimum Load Control

NOTES:

- Total Cap. (Total Unit Capacity) and Cir. Cap. (Circuit Capacity) are approximate percentage values.
- Example is to determine minimum load control, staged circuit loading, and automatic circuit select.

The capacity control algorithm runs every 30 seconds. The algorithm attempts to maintain the Control Point at the desired set point. Each time it runs, the control reads the entering and leaving fluid temperatures. The control determines the rate at which conditions are changing and calculates 2 variables based on these conditions. Next, a capacity ratio (SM2) is calculated using the 2 variables to determine whether or not to make any changes to the current stages of capacity. This ratio value ranges from -100 to +100%. If the next stage of capacity is a compressor, the control starts (stops) a compressor when the ratio reaches +100% (-100%). If the next stage of capacity is the Minimum Load Control, the control energizes (deenergizes) the Minimum Load Control when the ratio reaches +60% (-60%). If installed, the minimum load valve solenoid will be energized with the first stage of capacity. The control will also use the minimum load valve solenoid as the last stage of capacity before turning off the last compressor. If the close control feature (Configuration \rightarrow UNIT \rightarrow HGBP=2) is enabled the control will use the minimum load valve solenoid whenever possible to fine tune leaving fluid temperature control. A delay of 90 seconds occurs after each capacity step change with Minimum Load Control. A delay of 3 minutes occurs after each compressor capacity step change.

BRINE CHILLER OPERATION — For chiller sizes 120 to 390 with the factory-installed brine option, discharge and liquid line solenoids are added to all circuits (Circuit B only for size 120). The control system must be correctly configured for

proper operation. The minimum load valve option must be enabled (*Configuration* \rightarrow *UNIT* \rightarrow *HGBP*=1) and the fluid type must be set to medium temperature brine (*Configuration* \rightarrow *SERV* \rightarrow *FLUD*=2). The Minimum Load Valve output is used to control the discharge and liquid line solenoid valves. As a result, Minimum Load Control (Hot Gas Bypass) cannot be utilized on brine duty chillers. The discharge and liquid line solenoid valves are wired in parallel so they will both open and close at the same time. The main function of the solenoid valves is to isolate a portion of the condenser section when only a single compressor is running to allow for proper oil return to the compressors. A chart showing solenoid operation is shown below:

CIRCUIT CAPACITY	DISCHARGE/LIQUID SOLENOID VALVE OPERATION
All compressors off	Solenoids energized
One compressor starting	Solenoids deenergized after 30-second delay
Two or more compressors running	Solenoids energized
Reduction from two to one compressor running	Solenoids deenergized with no delay

NOTE: Minimum load valve (HGBP) cannot be utilized if fluid type is set to medium temperature brine (*Configuration* \rightarrow *SERV* \rightarrow *FLUD*=2).

CAPACITY CONTROL OVERRIDES — The following capacity control overrides (*Run Status*→*VIEW*→*CAP.S*) will modify the normal operation routine. If any of the following override conditions listed below is satisfied, it will determine the capacity change instead of the normal control.

Override #1: Cooler Freeze Protection — This override attempts to avoid the freeze protection alarm. If the Leaving Water Temperature is less than Brine Freeze Set Point (*Configuration* — *SERV* — *LOSP*) + 2.0° F (1.1° C) then remove a stage of capacity.

NOTE: The freeze set point is 34 F (1.1 C) for fresh water systems (*Configuration* \rightarrow *SERV* \rightarrow *FLUD*=1). The freeze set point is Brine Freeze Set Point (*Configuration* \rightarrow *SERV* \rightarrow *LOSP*), for Medium Temperature Brine systems (*Configuration* \rightarrow *SERV* \rightarrow *FLUD*=2).

Override #2: Circuit A Low Saturated Suction Temperature in Cooling

Override #3: Circuit B Low Saturated Suction Temperature in Cooling

Override #4: Circuit C Low Saturated Suction Temperature in Cooling — These overrides attempt to avoid the low suction temperature alarms. This override is active only when more than one compressor in a circuit is ON. If the Saturated Suction Temperature is less than Brine Freeze Set Point (*Configuration* → SERV → LOSP) –18.0 F (–10 C) for 90 seconds, or the Saturated Suction Temperature is less than –4 F (–20 C), a compressor in the affected circuit will be turned off.

Override #5: Low Temperature Cooling — This override removes one stage of capacity when the difference between the Control Point (*Run Status*—*VIEW*—*CTPT*) and the Leaving Water Temperature (*Run Status*—*VIEW*—*LWT*) reaches a predetermined limit and the rate of change of the water is 0 or still decreasing.

Override #6: Low Temperature Cooling — This override removes two stages of capacity when the Entering Water Temperature (*Run Status* → *VIEW* → *EWT*) is less than the Control Point (*Run Status* → *VIEW* → *CTPT*.)

Override #7: Ramp Loading — If the unit is configured for ramp loading (*Configuration* \rightarrow *OPTN* \rightarrow *RL.S*=ENBL) and if the difference between the Leaving Water Temperature and the Control Point is greater than 4° F (2.2° C) and the rate of change of the leaving water is greater than Cool Ramp Loading Rate (*Setpoints* \rightarrow *COOL* \rightarrow *CRMP*) then no capacity stage increase will be made. Operating mode 5 (MD05) will be in effect

Override #8: Service Manual Test Override — The manual test consists in adding a stage of capacity every 30 seconds, until the control enables all of the requested compressors and Minimum Load Control selected in the *Comfort*Link display Service Test menu. All safeties and higher priority overrides are monitored and acted upon.

Override # 9: Demand Limit — This override mode is active when a command to limit the capacity is received. If the current unit capacity is greater than the active capacity limit value, a stage is removed. If the current capacity is lower than the capacity limit value, the control will not add a stage that will result in the new capacity being greater then the capacity limit value. Operating mode 4 (MD04) will be in effect.

Override #10: Cooler Interlock Override — This override prohibits compressor operation until the Cooler Interlock (*Inputs* → *GEN.I* → *LOCK*) is closed.

Override #11: High Temperature Cooling — This override algorithm runs once when the unit is switched to ON. If the difference between the Leaving Water Temperature (*Run Status* \rightarrow *VIEW* \rightarrow *LWT*) and the Control Point (*Run Status* \rightarrow *VIEW* \rightarrow *CTPT*) exceeds a calculated value and the rate of change of the water temperature is greater than -0.1° F/min, a stage will be added.

Override #12: High Temperature Cooling — This override runs only when Minimum Load Control is Enabled (*Configuration*—*UNIT*—*HGBP* = 1, 2 or 3). This override will add a stage of capacity if the next stage is Minimum Load Control, when the difference between the Leaving Water Temperature (*Run Status*—*VIEW*—*LWT*) and the Control Point (*Run Status*—*VIEW*—*CTPT*) exceeds a calculated value and the rate of change of the water temperature is greater than a fixed value

Override #13: Minimum On/Off and Off/On Time Delay — Whenever a capacity step change has been made, either with Minimum Load Control or a compressor, the control will remain at this capacity stage for the next 90 seconds. During this time, no capacity control algorithm calculations will be made. If the capacity step is a compressor, an additional 90-second delay is added to the previous hold time (see Override #22). This override allows the system to stabilize before another capacity stage is added or removed. If a condition of a higher priority override occurs, the higher priority override will take precedence.

Override #14: Slow Change Override — This override prevents compressor stage changes when the leaving temperature is close to the control point and slowly moving towards the control point.

Override #15: System Manager Capacity Control — If a Chillervisor module is controlling the unit and the Chillervisor module is controlling multiple chillers, the unit will add a stage to attempt to load to the demand limited value.

Override #16: Circuit A High Pressure Override Override #17: Circuit B High Pressure Override

Override #18: Circuit C High Pressure Override — This override attempts to avoid a high pressure failure. The algorithm is run every 4 seconds. At least one compressor must be on in the circuit. If the Saturated Condensing Temperature for the circuit is above the High Pressure Threshold (*Configuration* → *SERV* → *HP.TH*) then a compressor for that circuit will be removed. If Minimum Load Control was enabled for High Ambient (*Configuration* → *UNIT* → *HGBP*=3), then the Minimum Control Valve will be energized.

Override #19: Standby Mode — This override algorithm will not allow a compressor to run if the unit is in Standby mode, (*Run Status* → *VIEW* → *HC.ST*=2).

Override #22: Minimum On Time Delay — In addition to Override #13 Minimum On/Off and Off/On Time Delay, for compressor capacity changes, an *additional* 90-second delay will be added to Override #13 delay. No compressor will be deenergized until 3 minutes have elapsed since the last compressor has been turned ON. When this override is active, the capacity control algorithm calculations will be performed, but no capacity reduction will be made until the timer has expired. A control with higher precedence will override the Minimum On Time Delay.

Override #23: Circuit A Low Saturated Suction

Temperature in Cooling

Override #24: Circuit B Low Saturated Suction

Temperature in Cooling

Override #25: Circuit C Low Saturated Suction

Temperature in Cooling — If the circuit is operating in an area close to the operational limit of the compressor, the circuit capacity will remain at the same point or unload to raise the saturated suction temperature. This algorithm will be active if at least one compressor in the circuit is on and one of the following conditions is true:

- 1. Saturated Suction Temperature is less than Brine Freeze (*Configuration→SERV→LOSP*) − 6° F (3.3° C).
- Saturated Suction Temperature is less than Brine Freeze (Configuration→SERV→LOSP) and the circuit approach (Leaving Water Temperature – Saturated Suction Temperature) is greater than 15° F (8.3° C) and the Circuit

Superheat (Return Gas Temperature – Saturated Suction Temperature) is greater than 15° F (8.3° C).

NOTE: The freeze set point is 34 F (1.1 C) for fresh water systems (*Configuration* \rightarrow *SERV* \rightarrow *FLUD*=1). The freeze set point is Brine Freeze Set Point (*Configuration* \rightarrow *SERV* \rightarrow *LOSP*), for Medium Temperature Brine systems (*Configuration* \rightarrow *SERV* \rightarrow *FLUD*=2).

If any of these conditions are met, the appropriate operating mode, 21 (Circuit A), 22 (Circuit B) or 23 (Circuit C) will be in effect.

Override #26: Circuit A Operation Outside Compressor Operating Envelope

Override #27: Circuit B Operation Outside Compressor Operating Envelope

Override #28: Circuit C Operation Outside Compressor Operating Envelope — This override prevents compressor operation outside of its operating envelope.

- 1. If the mean saturated discharge temperature (SDT) is greater than 7° F (3.9° C) over the limit, the circuit is unloaded immediately.
- 2. If the mean SDT is over the limit (but not greater than 7° F (3.9° C) over the limit) for 90 seconds, then the circuit is unloaded.
- 3. If the mean SDT is more than the limit minus 2° F (1.1° C), the circuit is prevented from loading. This override shall remain active until the mean pressure goes below the limit minus 3° F (1.7° C).

Override #34: Circuit A Low Refrigerant Charge
Override #35: Circuit B Low Refrigerant Charge
Override #36: Circuit C Low Refrigerant Charge — The capacity override attempts to protect the compressor from starting with no refrigerant in the circuit. This algorithm runs only when the circuit is not operational, (no compressors ON).
There are several criteria that will enable this override:

- 1. The Saturated Suction Temperature or Saturated Discharge Temperature is less than -13 F (-10.6 C).
- 2. All of these conditions must be true:
 - a. The Saturated Suction Temperature or Saturated Discharge Temperature is less than Leaving Water Temperature by more than 5.4° F (3.0° C).
 - b. Saturated Suction Temperature or Saturated Discharge Temperature is less than 41 F (5 C).
 - c. Outdoor Air Temperature is less than 32 F (0° C).
 - d. Saturated Suction Temperature or Saturated Discharge Temperature is less than the Outdoor Air Temperature by more than 5.4° F (3.0° C).
- 3. All of these conditions must be true:
 - a. The Saturated Suction Temperature or Saturated Discharge Temperature is less than Leaving Water Temperature by more than 5.4° F (3.0° C).
 - b. Saturated Suction Temperature or Saturated Discharge Temperature is less than 41 F (5 C).
 - c. Saturated Suction Temperature or Saturated Discharge Temperature is less than the Brine Freeze Point (*Configuration*→*SERV*→*LOSP*) by more than 6° F (3.3° C).

NOTE: The freeze set point is 34 F (1.1 C) for fresh water systems (*Configuration* \rightarrow *SERV* \rightarrow *FLUD*=1). The freeze set point is Brine Freeze Set Point (*Configuration* \rightarrow *SERV* \rightarrow *LOSP*), for Medium Temperature Brine systems (*Configuration* \rightarrow *SERV* \rightarrow *FLUD*=2).

- 4. All of these conditions must be true:
 - a. The Saturated Suction Temperature or Saturated Discharge Temperature is less than Leaving Water Temperature by more than 5.4° F (3.0° C).
 - b. Saturated Suction Temperature or Saturated Discharge Temperature is less than 41 F (5 C).
 - c. Saturated Suction Temperature or Saturated Discharge Temperature is less than the Outdoor Air Temperature by more than 9° F (5° C).

If any of these conditions 1, 2, 3 or 4 are met, the appropriate operating mode, 21 (Circuit A), 22 (Circuit B) or 23 (Circuit C) will be in effect.

Override #37: Circuit A Low Superheat
Override #38: Circuit B Low Superheat
Override #39: Circuit C Low Superheat
— This override at-

Override #39: Circuit C Low Superheat — This override attempts to avoid liquid slugging for the running compressors. It also protects against operation with excessively high superheat. No capacity steps will be added to the affected circuit until there is a superheat greater than 5° F (2.8° C) and less than 45° F (25° C). If the capacity of the machine must be increased, the control will look to another circuit for additional capacity.

Head Pressure Control

STANDARD UNIT — The main base board (MBB) controls the condenser fans to maintain the lowest condensing temperature possible, and thus the highest unit efficiency. The MBB uses the saturated condensing temperature input from the discharge pressure transducer to control the fans. Head pressure control is maintained through a calculated set point which is automatically adjusted based on actual saturated condensing and saturated suction temperatures so that the compressor(s) is (are) always operating within the manufacturer's specified envelope (see Fig. 11). Each time a fan is added the calculated head pressure set point will be raised 25° F (13.9° C) for 35 seconds to allow the system to stabilize. The control will automatically reduce the unit capacity as the saturated condensing temperature approaches an upper limit. See capacity overrides 16-18. The control will indicate through an operating mode that high ambient unloading is in effect. If the saturated condensing temperature in a circuit exceeds the calculated maximum, the circuit will be stopped. For these reasons, there are no head pressure control methods or set points to enter. The control will turn off a fan stage when the condensing temperature is below the minimum head pressure requirement for the compressor. Fan sequences are shown in Fig. 12.

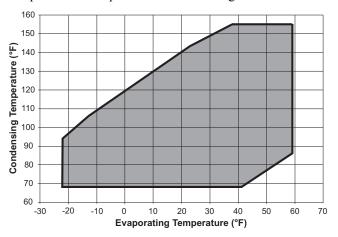


Fig. 11 — Compressor Operating Envelope

		1		1					
	MODEL	CIRCUIT	FANS/ CKT	LOCATION	1	2	FAN STAGE 3	4	5
	1			Fan Number	FM1	FM2	FM3	_	
	060,070	Α	3	Fan Board/Channel	FB1/CH1	FB1/CH2	FB1/CH3	_	_
TO XOB FM1 FM3 FM2 FM4	000,070	В	1	Fan Number	FM4	_		_	
Name of the second se	-			Fan Board/Channel Fan Number	FB1/CH5 FM1	FM2			
S (FM2) (FM4)		Α	2	Fan Board/Channel	FB1/CH1	FB1/CH2			
30RB060,070,080	080	_		Fan Number	FM3	FM4	_	_	_
		В	2	Fan Board/Channel	FB1/CH5	FB1/CH6		_	_
		A	3	Fan Number	FM1	FM2	FM3	_	
OUT (FM3) (FM5) (FM2) (FM4) (FM6)	090,100,	0,100,		Fan Board/Channel	FB1/CH1	FB1/CH2	FB1/CH3	_	_
B FM2 FM4 FM6	110	В	3	Fan Number	FM5	FM6	FM4	_	_
30RB090,100,110				Fan Board/Channel	FB1/CH5	FB1/CH6	FB1/CH7	_	_
		A	3	Fan Number	FM3	FM1	FM2	_	_
TO X OB	120			Fan Board/Channel	FB1/CH1	FB1/CH2	FB1/CH3	_	_
B (FM2) (FM6) (FM8)		В	4	Fan Number	FM7	FM5	FM8	FM6	
30RB120				Fan Board/Channel	FB1/CH5	FB1/CH6	FB1/CH7	FB1/CH8	
[FM1 FM3 FM5 FM7]		A	4	Fan Number	FM3	FM1	FM4	FM2	
LEGISTON OF THE PROPERTY OF TH	130,150			Fan Board/Channel	FB1/CH1	FB1/CH2	FB1/CH3	FB1/CH4	
		В	4	Fan Number	FM7	FM5	FM8	FM6	
30RB130,150		A		Fan Board/Channel	FB1/CH5 FM5	FB1/CH6	FB1/CH7 FM1	FB1/CH8	— FM2
FM1			6	Fan Number Fan Board/Channel	FB1/CH1	FM3 FB1/CH2	FB1/CH3	FM4 FM6 FB1/CH4	FB1/CH5
THE STATE OF THE S	160,170	В	4	Fan Number	FM9	FM7	FM10	FM8	FB1/CH3
30RB160,170				Fan Board/Channel	FB2/CH1	FB2/CH2	FB2/CH3	FB2/CH4	
30110100,170	A 4			Fan Number	FM5	FM3	FM1	FM4 FM6	FM2
		Α	6	Fan Board/Channel	FB1/CH1	FB1/CH2	FB1/CH3	FB1/CH4	FB1/CH5
	190			Fan Number	FM11	FM9	FM7	FM10	FM8
FM1		В	6	Fan Board/Channel	FB2/CH1	FB2/CH2	FB2/CH3	FM12 FB2/CH4	FB2/CH5
				Fan Number	FM3	FM1	FM4	FM2	FB2/CH3
[FM2] (FM4) (FM6) (FM8) (FM10) (FM12)		A	4	Fan Board/Channel	FB1/CH1	FB1/CH2	FB1/CH3	FB1/CH4	_
	210,225	В	4	Fan Number	FM7	FM5	FM8	FM6	\rightarrow
30RB190,210,225	210,220		-	Fan Board/Channel	FB1/CH5	FB1/CH6	FB1/CH7	FB1/CH8	
		С	4	Fan Number Fan Board/Channel	FM11 FB3/CH1	FM9 FB3/CH2	FM12 FB3/CH3	FM10	
				Fan Number	FM3	FM1	FM4	FM2	
		Α	4	Fan Board/Channel	FB1/CH1	FB1/CH2	FB1/CH3	FB1/CH4	_
$\bigcirc \times $ (FM1) (FM3) (FM5) (FM7) (FM9) (FM11) (FM13)				Fan Number	FM7	FM5	FM8	FM6	
	250	В	4	Fan Board/Channel	FB1/CH5	FB1/CH6	FB1/CH7	FB1/CH8	
FM1 FM3 FM5 FM7 FM9 FM11 FM13 FM2 FM4 FM6 FM8 FM10 FM12 FM14 FM14 FM14 FM15 FM10 FM12 FM14 FM16 FM17 FM18 FM19 FM								FM12	
30RB250		С	6	Fan Number	FM13	FM11	FM9	FM14	FM10
				Fan Board/Channel	FB3/CH1	FB3/CH2	FB3/CH3	FB3/CH4	FB3/CH5
		A	6	Fan Number	FM5	FM3	FM1	FM4 FM6	FM2
G (FM1) (FM3) (FM5) (FM7) (FM9) (FM11) (FM13) (FM15)				Fan Board/Channel	FB1/CH1	FB1/CH2	FB1/CH3	FB1/CH4	FB1/CH5
FM2 FM4 FM6 FM8 FM10 FM12 FM14 FM16 FM16 FM17 FM19		_	_	Fan Number	FM11	FM9	FM7	FM10 FM12	FM8
[FM12] (FM4) (FM6) (FM8) (FM10) (FM12) (FM14) (FM16)	275	В	6	Fan Board/Channel	FB2/CH1	FB2/CH2	FB2/CH3	FB2/CH4	FB2/CH5
	1			Fan Number	FM15	FM13	FM16	FM14	_
		С	4	Fan Board/Channel	FB3/CH1	FB3/CH2	FB3/CH3	FB3/CH4	_
30RB275		'							
				Fan Number	FM5	FM3	FM1	FM4 FM6	FM2
30RB275		A	6	Fan Number		FM3 FB1/CH2		FM4 FM6 FB1/CH4	
30RB275			6	Fan Number Fan Board/Channel	FB1/CH1	FB1/CH2	FB1/CH3	FM4 FM6 FB1/CH4 FM10	FB1/CH5
30RB275	300		6	Fan Number Fan Board/Channel Fan Number	FB1/CH1 FM11	FB1/CH2 FM9	FB1/CH3 FM7	FB1/CH4 FM10 FM12	FB1/CH5 FM8
30RB275	300	A		Fan Number Fan Board/Channel	FB1/CH1	FB1/CH2	FB1/CH3	FB1/CH4 FM10 FM12 FB2/CH4	FB1/CH5
30RB275	300	A		Fan Number Fan Board/Channel Fan Number	FB1/CH1 FM11	FB1/CH2 FM9	FB1/CH3 FM7	FB1/CH4 FM10 FM12	FB1/CH5 FM8

Fig. 12 — Condenser Fan Staging (Standard Unit)

LOW AMBIENT TEMPERATURE HEAD PRESSURE CONTROL OPTION — For low-ambient operation, the lead fan on a circuit can be equipped with low ambient temperature head pressure control option or accessory. The Danfoss VLT controller adjusts fan speed to maintain the calculated head pressure set point. Table 20 lists required configurations for Danfoss VLT low ambient head pressure control option.

Table 20 — Danfoss VLT Required Configurations, Low Ambient Head Pressure Control Option

POINT NAME	DESCRIPTION	VALUE
VAR.A	Nb Fan on Varifan Cir A	1
VAR.B	Nb Fan on Varifan Cir B	1
VAR.C	Nb Fan on Varifan Cir C	0 (Unit sizes 060-190 and modular units 1 (Unit sizes 210-300 only)
VLT.S	VLT Fan Drive Select	1
RPM.F	VLT Fan Drive RPM	1140
FC	Factory Country Code	1
VFDV	VFD Voltage for USA	Nameplate voltage (208,380,460,575)*

^{*208/230} v units should be configured for 208 v.

High-Efficiency Variable Condenser Fans (HEVCF) (30RB080-390 with Greenspeed® Intelligence) — This option controls the speed of all fans for improvement in part load efficiency and sound levels. All fans on a circuit are controlled by a VFD and run at the same speed.

<u>Fan Drive Operation</u> — The HEVCF option uses Danfoss VLT 102 variable frequency drives. Drives are connected to the LEN communication bus. Fan speed is determined by the chiller controller and communicated to the drive. Table 21 lists required configurations for the Danfoss VLT HEVCF option.

Table 21 — Danfoss VLT Required Configurations, HEVCF Option

POINT NAME	DESCRIPTION	VALUE
VAR.A	Nb Fan on Varifan Cir A	No. of fans in ckt
VAR.B	Nb Fan on Varifan Cir B	No. of fans in ckt
VAR.C	Nb Fan on Varifan Cir C	0 (Unit sizes 060-190 and modular units No. of fans in ckt (Unit sizes 210-300 only)
VLT.S	VLT Fan Drive Select	2
RPM.F	VLT Fan Drive RPM	1140
FC	Factory Country Code	1
VFDV	VFD Voltage for USA	Nameplate voltage (208,380,460,575)*

^{*208/230} v units should be configured for 208 v.

Fan speed is controlled to maintain SCT set point. The set point is calculated from conditions and adjusted to the most efficient operating point. Fixed set points are also used at low ambient and transition conditions. If the unit is operated in Service Test mode, the SCT set point is fixed at 125 F (51.7 C) for adjusting charge.

Drive parameters are set by the chiller control each time the unit power is cycled with the exception of the drive address. The drive address is set at the factory, but will have to be reset in case of drive replacement. Addresses for the drives are shown below:

	DRIVE ADDRESS							
Drive Parameter	Drive Parameter Ckt A Ckt B Ckt C							
8-31	181	182	183					

The address is set using the display on the drive. See drive manual for detailed instructions. Once the address is set, the power is cycled to reset all other parameters in the drive. Other parameters are listed in Tables 22 and 23 for reference. Drive must be in "Auto" mode to operate. Push the "Auto" button at the bottom of the drive. The light above it will be on.

The 208-230 v units with 6 condenser fans per circuit require two drives to operate the fans. See Table 24. They are set up in a master/slave configuration. The master drive is connected to the LEN bus as described above. The slave drive is not connected to LEN. All parameters must be set manually if the drive is replaced as shown in Table 25. The slave drive does not have an address.

Fan motor troubleshooting should be done at the drive. Disconnect power from unit. Remove the entire front cover. Remove smaller panel covering terminal block at lower right corner of drive. See Fig. 13. Each fan wire is connected to a separate terminal. Terminals are labeled and color coded to match the fan wires. All terminals are connected in parallel. All terminals of a certain color, or label, are the same point electrically. Disconnect each fan cable and check resistance of motor. An open or short reading between phases or a phase and ground could signify a failed fan motor. Verify reading at motor before replacing. Reconnect wires using color coding. Replace terminal block cover, drive cover, and power unit to test fan operation.

Drive alarms are shown on the chiller controls as: V0-xx Variable Speed Fan Motor Failure, Circuit A V1-xx Variable Speed Fan Motor Failure, Circuit B V2-xx Variable Speed Fan Motor Failure, Circuit C

The characters "xx" correspond to a specific alarm. Common alarms are listed in Table 26 with possible causes. For a complete list of alarms and causes, see the drive manual supplied with the chiller.

Drives and motors are protected by fuses for short circuit protection. See the Service Test section for details. Fan motor overload protection is provided by an overload device internal to the motor. The motor overload responds to a combination of temperature and current. On overload condition, the device breaks all 3 phases to the motor. It will reset automatically once the motor temperature cools.

NOTE: See Appendix G for Siemens and Schneider low ambient control information.

Table 22 — HEVCF Parameters Reset at Chiller Power Cycle

	PARAMETER									
No. Fans	1-20	1-22	1-23	1-24	1-25					
Per Circuit	Motor Power (kW)	Motor Volts	Motor Frequency (Hz)	Motor Amps (A)	Motor Speed (RPM)					
		208		11.9						
1	2.6	380	60	6.5	1140					
Į.	2.0	460	00	5.4	1140					
		575		4.3						
		208		23.8						
2	5.2	380	60	13.0	1140					
2	5.2	460	00	10.8	1140					
		575		8.6						
		208		35.7						
3	7.8	380	60	19.5	1140					
3	7.0	460	00	16.2	1140					
		575		12.9						
		208		47.6						
4	10.4	380	60	26.0	1140					
4	10.4	460	00	21.6	1140					
		575		17.2						
		208		71.4						
6	15.6	380	60	39.0	1140					
O	15.0	460	00	32.4	1140					
		575		25.8						

Table 23 — HEVCF Parameters Common to All Setups

PARAMETER	DESCRIPTION	SETTING
0-02	Motor Speed Unit	1 = Hz
1-03	Torque Characteristic	1 = Variable Torque
1-73	Flying Restart	1 = Yes
1-80	Function Stop	0 = Coast
1-90	Motor Temp Protection	0 = No
1-91	Motor External Fan	0 = No
1-93	Thermistor SRC	0 = No
3-03	Max Ref	60
3-15	SRC Ref #1	1 = AI #53
3-16	SRC Ref #2	0 = No
3-41	Ramp Up	5 = 5 Seconds
3-42	Ramp Down	5 = 5 Seconds
4-10	Motor Speed Direction	0 = Clockwise
4-12	Motor Speed Low Limit	5
4-14	Motor Speed High Limit	61
4-16	Torque Limit Mode	225
4-18	Current Limit	110
4-19	Max Output Freq	61
5-12	DI #27	0 = No Operation
14-01	Switching Frequency	4
14-03	Overmodulation	1 = Yes
14-40	VT Level Zero Mag Level	66
14-60	Function at Overtemp	1 = Derate
8-04	Time-Out	2 = Stop

Table 24 — 208-230 v Units with 6-Fan Circuits

UNIT SIZE	CIRCUIT
160-170	A
190	A, B, C
250	С
275	A, B
300	A, B, C

→ Table 25 — HEVCF Parameters for 208-230 v Units with 6 Fans per Circuit

DRIVE PARAMETER	FVDx-1*	FVDx-2*		
8-31	Address†			
3-02		0 = Min Ref.		
3-03	_	60 = Max Ref.		
3-15		1 = AI 53		
3-41		5 = Ramp up		
3-42		5 = Ramp Down		
4-12	_	5 = Motor Min		
4-14	_	61 = Motor Max		
4-19	_	61 = Max Freq.		
5-02	1	0 = Input		
5-12	_	0 = No Oper.		
5-31	5	_		
6-12	_	4 = Low Current		
6-13	_	20 = High Current		
6-14	_	0 = Low Ref.		
6-14	_	60 = High Ref.		
6-50	131 = 4-20	_		
6-51	0 = Min Scale	_		
6-52	100 = Max Scale	_		
8-30	20	0		

*x = Circuit A, B, or C. †See Drive Address table on page 27.

1115 28

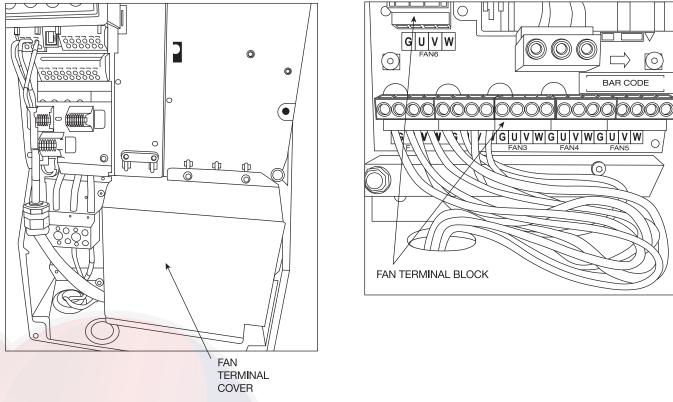


Fig. 13 — Fan Terminal Cover and Terminal Block

Table 26 — HEVCF Common Alarms

ALARM*	DESCRIPTION	POSSIBLE CAUSE, ACTION
Vx-04	Mains phase loss	Phase is missing or imbalance is too high on supply side. Check incoming wiring, drive fuses, and incoming power to unit. This is also used for a fault in the input rectifier on the frequency converter.
Vx-09	Inverter Overload	Frequency converter has cut out due to excessive current and temperature over a certain time period. Check motors for locked rotor or shorts.
Vx-12	Torque Limit	Motor torque limit has been exceeded. Check motor for locked rotor or fan restrictions.
Vx-13	Over Current	Inverter peak current limit is exceeded. Check motor for locked rotor or fan restrictions.
Vx-14	Earth (ground) Fault	Current exists between output phases and ground. Check motors for short to ground. Check wiring connections at fan motor terminal block at drive.
Vx-16	Short Circuit	There is a short circuit in the motor wiring. Find the short circuit and repair.
Vx-17	Control Word Timeout	Drive is not communicating with chiller. Check LEN bus wiring connections. Assure address is set properly.
Vx-29	Heatsink Temp	Heatsink has exceeded max temperature. Check drive fan operation and blockage of airflow to heatsink fins.
Vx-30	Motor Phase U Missing	Check wiring and motor for missing phase.
Vx-31	Motor Phase V Missing	Check wiring and motor for missing phase.
Vx-32	Motor Phase W Missing	Check wiring and motor for missing phase.
Vx-34	Fieldbus Communication Fault	Fieldbus on communication card in drive is not working.

x = 0, 1, or 2.

Cooler Pump Control (*Configuration*→ *OPTN*→ *PUMP*) — The 30RB units can be configured for cooler pump control. Cooler Pumps Sequence is the variable that must be confirmed in the field. Proper configuration of the cooler pump control is required to provide reliable chiller operation. The factory default setting for Cooler Pumps Sequence is *PUMP*=0 (no pump output), for units without the factory-installed hydronic package. For units with the hydronic package, the factory default setting for Cooler Pumps Sequence is *PUMP*=1 (1 pump only) for single pump units, or *PUMP*=2 (2 pumps auto) for dual pump units. For dual pump hydronic option units, three control options exist. If the Cooler Pumps Sequence (*PUMP*) is set to 2, the control will start the pumps and automatically alternate the operation of the pumps to even the

wear of the pumps. If a flow failure is detected, the other pump will attempt to start. Two manual control options also exist. When the Cooler Pumps Sequence is set to *PUMP=3* Cooler Pump 1 will always operate. When the Cooler Pumps Sequence is set to *PUMP=4* Cooler Pump 2 will always operate.

It is recommended for all chillers that the cooler pump control be utilized unless the chilled water pump runs continuously or the chilled water system contains a suitable concentration of antifreeze solution. When the Cooler Pumps Sequence is configured, the cooler pump output will be energized when the chiller enters an "ON" mode. The cooler pump output is also energized when certain alarms are generated. The cooler pump output should be used as an override to the external pump control if cooler pump control is not utilized. The cooler pump output is

energized if a P.01 Water Exchanger Freeze Protection alarm is generated, which provides additional freeze protection if the system is not protected with a suitable antifreeze solution.

For all Cooler Pumps Sequence (*PUMP*) settings (including 0), closure of both the chilled water flow switch (CWFS) and the chilled water pump interlock contact (connected across TB-5 terminals 1 and 2) are required. In addition, for Cooler Pumps Sequence settings of *PUMP* = 1, 2, 3, 4, normally open auxiliary contacts for Pump 1 and Pump 2 (wired in parallel) must be connected to the violet and pink wires located in the harness from the MBB-J5C-CH18 connector. The wires in the harness are marked "PMP1-13" and "PMP1-14." See the field wiring diagram in the 30RB Installation Instructions.

Regardless of the cooler pump control option selected, if the chilled water flow switch/interlock does not close within the MINUTES OFF TIME (*Configuration*—*OPTN*—*DELY*) period after the unit is enabled and in an ON mode, alarm P.14 will be generated.

Other conditions which will trigger this alarm include:

- Cooler pump interlock is open for at least 30 seconds during chiller operation.
- Lag chiller in Master/Slave Control pump interlock does not close after 1 minute of the pump start command.
- Cooler pump control is enabled and the chilled water flow switch/interlock is closed for more than 2 minutes following a command to shut down the pump.

The last alarm criterion can be disabled. If Flow Checked if Pmp Off (*Configuration* \rightarrow *OPTN* \rightarrow *P.LOC*) is set to NO, the control will ignore the pump interlock input if the cooler pump output is OFF.

The *Comfort*Link controls have the ability to periodically start the pumps to maintain the bearing lubrication and seal integrity. If Periodic Pump Start (*Configuration* \rightarrow *OPTN* \rightarrow *PM.PS*) is set to YES, and if the unit is off at 2:00 PM, a pump will be started once each day for 2 seconds. If the unit has 2 pumps, Pump 1 will be started on even days (such as day 2, 4, or 6 of the month); Pump 2 will be started on odd days. The default for this option is *PM.PS*=NO.

The pump will continue to run for 60 seconds after an off command is issued.

Machine Control Methods — Three variables control how the machine operates. One variable controls the machine On-Off function. The second controls the set point operation. The third variable controls the Heat-Cool operation which is always set to cool. Table 27 illustrates how the control method and cooling set point select variables direct the operation of the chiller and the set point to which it controls. Table 27 also provides the On/Off state of the machine for the given combinations.

Machine On/Off control is determined by the configuration of the Operating Type Control (*Operating Modes→SLCT →OPER*). Options to control the machine locally via a switch, on a local Time Schedule, or via a Carrier Comfort Network® command are offered.

SWITCH CONTROL — In this Operating Type Control, the Enable/Off/Remote Contact switch controls the machine locally. All models are factory configured with *OPER*=0 (Switch Control). With the *OPER* set to 0, simply switching the Enable/Off/Remote Contact switch to the Enable or Remote Contact position (external contacts closed) will put the chiller in an occupied state. The unit Occupied Status (*Run Status→VIEW→OCC*) will change from **NO** to **YES**. The Status Unit Control Type (*Run Status→VIEW→CTRL*) will change from **0** (Local Off) when the switch is Off to **1** (Local On) when in the Enable position or Remote Contact position with external contacts closed.

TIME SCHEDULE — In this Operating Type Control, the machine operates under a local schedule programmed by the user as long as the Enable/Off/Remote Contact switch is in the Enable or Remote Contact position (external contacts closed). To operate under this Operating Type Control, *Operating Modes—SLCT* must be set to *OPER=1*. Two Internal Time Schedules are available. Time Schedule 1 (*Time Clock—SCH1*) is used for single set point On-Off control. Time Schedule 2 (*Time Clock—SCH2*) is used for dual set point On-Off and Occupied-Unoccupied set point control. The control will use the operating schedules as defined under the Time Clock mode in the scrolling marquee display.

CCN Global Time Schedule — A CCN Global Schedule can be utilized. The schedule number can be set anywhere from 65 to 99 for operation under a CCN global schedule. The 30RB chillers can be configured to follow a CCN Global Time Schedule broadcast by another system element. The Comfort-VIEWTM Network Manager's Configure and Modify commands or the Service Tool's Modify/Names function must be used to change the number of the Occupancy Equipment Part Table Name (OCC1P01E) to the Global Schedule Number. The Schedule Number can be set from 65 to 99 (OCC1P65E).

The Occupancy Supervisory Part table name (OCC1P01S) number must be changed to configure the unit to broadcast a Global Time Schedule. The Schedule Number can be set from 65 to 99 (OCC1P65S). When OCC1PxxS is set to a value greater than 64, an occupancy flag is broadcast over the CCN every time it transitions from occupied to unoccupied or vice-versa. By configuring their appropriate Time Schedule decisions to the same number, other devices on the network can follow this same schedule. The Enable/Off/Remote Contact must be in the Enable position or Remote Contact position with the contacts closed for the unit to operate. The Status Unit Control Type (*Run Status*—*VIEW*—*STAT*) will be 0 (Local Off) when the switch is Off. The Status Unit Control Type will be 2 (CCN) when the Enable/Off/Remote Contact switch input is On.

Table 27 — Control Methods and Cooling Set Points

	PARAMETER					A OTIVE	
Control Method (OPER)	Heat Cool Select (<i>HC.SE</i>)	Setpoint Select (SP.SE)	Ice Mode Enable (<i>ICE.M</i>)	Ice Done (ICE.D)	Dual Setpoint Switch (<i>DUAL</i>)	Setpoint Occupied (SP.OC)	ACTIVE SET POINT
	0 (Cool)	1 (Setpoint1)	_	_	_	_	CSP.1
			Enable	Open	Closed	_	CSP.3
		2 (Setpoint2)	_	_	_	_	CSP.2
			Enable	Open	Closed	_	CSP.3
		3 (4-20mA Setp)	_	_	_	_	4-20 mA
(Switch Ctrl)		_	Enable	Open	Open	_	CSP.1
(Switch Ctrl)					Closed	_	CSP.3
				Closed	Closed	_	CSP.2
		4 (Dual Setp Sw)	_	_	Open	_	CSP.1
					Closed	_	CSP.2
			Enabled	Open	Closed	_	CSP.3
				Closed	Closed	_	CSP.2
	0 (Cool)	0 (Setpoint Occ)	_		_	Occupied	CSP.1
1 (Time Sched)						Unoccupied	CSP.2
			Enable	Open	_	Unoccupied	CSP.3
				Closed	_		CSP.2
	0 (Cool)	-			_	Occupied	CSP.1
(CCN)			_		_	Unoccupied	CSP.2
(55.1,			Enable	Open	_	Unoccupied	CSP.3

- = No Effect

CCN CONTROL — An external CCN device such as Chillervisor controls the On/Off state of the machine. This CCN device forces the variable CHIL_S_S between Start/Stop to control the chiller. The Status Unit Control Type (*Run Status* → *VIEW* → *STAT*) will be 0 (Local Off) when the Enable/Off/ Remote Contact switch is Off. The Status Unit Control Type will be 2 (CCN) when the Enable/Off/Remote Contact switch is in the enable or remote contact position with external contacts closed and the CHIL_S_S variable is Stop or Start

UNIT RUN STATUS (*Run Status* \rightarrow *VIEW* \rightarrow *STAT*) — As the unit transitions from off to on and back to off, the Unit Run Status will change based on the unit's operational status. The variables are: 0 (Off), 1 (Running), 2 (Stopping), and 3 (Delay).

- 0 indicates the unit is Off due to the Enable/Off/Remote Contact Switch, a time schedule or CCN command.
- 1 indicates the unit is operational.
- 2 indicates the unit is shutting down due to the command to shut down from the Enable/Off/Remote Contact Switch, a time schedule or CCN command.
- 3 indicates the unit has received a command to start from Enable/Off/Remote Contact Switch, a time schedule or CCN command, and is waiting for the start-up timer (Configuration—OPTN—DELY) to expire.

Cooling Set Point Selection (*Operating Modes* → *SLCT*→ *SP.SE*) — Several options for controlling the Leaving Chilled Water Set Point are offered and are configured by the Cooling Set Point Select variables. In addition to the Cooling Set Point Select, Ice Mode Enable (*Configuration*→ *OPTN*→ *ICE.M*), and Heat Cool Select (*Operating Modes*→ *SLCT*→ *HC.SE*) variables also have a role in determining the set point of the machine. All units are shipped from the factory with the Heat Cool Select variable set to *HC.SE*=0 (Cooling). All set points are based on Leaving Water Control, (*Configuration*→ *SERV*→ *EWTO*=NO).

In all cases, there are limits on what values are allowed for each set point. These values depend on the Cooler Fluid Type (*Configuration* \rightarrow *SERV* \rightarrow *FLUD*) and the Brine Freeze Set point (*Configuration* \rightarrow *SERV* \rightarrow *LOSP*). See Table 28.

Table 28 — Configuration Set Point Limits

SET POINT LIMIT	COOLER FLUID TYPE, FLUD			
SET POINT LIMIT	1 = Water	2 = Medium Brine		
Minimum*	38 F (3.3 C)	14 F (-10.0 C)		
Maximum	60 F (15.5 C)			

*The minimum set point for Medium Temperature Brine applications is related to the Brine Freeze Point. The set point is limited to be no less than the Brine Freeze Point +5° F (2.8° C).

SET POINT 1 (*Operating Modes*—*SLCT*—*SP.SE*=1) — When Set Point Select is configured to 1, the unit's active set point is based on Cooling Set Point 1 (*Set Point*—*COOL*—*CSP.1*).

SET POINT 2 (*Operating Modes*—*SLCT*—*SP.SE*=2) — When Set Point Select is configured to 2, the unit's active set point is based on Cooling Set Point 2 (*Set Point*—*COOL*—*CSP.2*).

4 TO 20 mA INPUT (*Operating Modes→SLCT* → *SP.SE*=3) — When Set Point Select is configured to 3, the unit's active set point is based on an external 4 to 20 mA signal input to the Energy Management Module (EMM).

See Table 27 for Control Methods and Cooling Set Points. The following equation is used to control the set point. See Fig. 14.

Set Point =
$$10 + 70(\text{mA} - 4)/16 \text{ (deg F)}$$

Set Point = $-12.2 + 38.9(\text{mA} - 4)/16 \text{ (deg C)}$

DUAL SWITCH (*Operating Modes*—*SLCT*—*SP.SE*=4) — When Set Point Select is configured to 4, the unit's active set point is based on Cooling Set Point 1 (*Set Point*—*COOL*—*CSP.1*) when the Dual Set Point switch contacts are open and Cooling Set Point 2 (*Set Point*—*COOL*—*CSP.2*) when they are closed.

Ice Mode — Operation of the machine to make and store ice can be accomplished many ways. The Energy Management Module and an Ice Done Switch are required for operation in the Ice Mode. In this configuration, the machine can operate with up to three cooling set points: Cooling Set Point 1 (Occupied) (Set Point→COOL→CSP.1), Cooling Set Point 2 (Unoccupied) (Set Point→COOL→CSP.2), and Ice Set Point (Set Point→COOL→CSP.3).

SET POINT OCCUPANCY (*Operating Modes*→ *SLCT*→*SP.SE*=0) — When Set point Select is configured to 0, the unit's active set point is based on Cooling Set Point 1 (*Set Point*→*COOL*→*CSP.1*) during the occupied period while operating under *Time Clock*→*SCH1*. If the *Time Clock* → *SCH2* is in use, the unit's active set point is based on Cooling Set Point 1 (*Set Point*→*COOL*→*CSP.1*) during the occupied period and Cooling Set Point 2 (*Set Point* → *COOL*→*CSP.2*) during the unoccupied period.

Temperature Reset — Temperature reset is a value added to the basic leaving fluid temperature set point. The sum of these values is the control point. When a non-zero temperature reset is applied, the chiller controls to the control point, not the set point. The control system is capable of handling leaving-fluid temperature reset based on cooler fluid temperature difference. Because the change in temperature through the cooler is a measure of the building load, the temperature difference reset is in effect an average building load reset method. The control system is also capable of temperature (SPT), or from an externally powered 4 to 20 mA signal. An accessory sensor must be used for SPT reset (33ZCT55SPT). The energy management module (EMM) is required for temperature reset using space temperature or a 4 to 20 mA signal.

Under normal operation, the chiller will maintain a constant leaving fluid temperature approximately equal to the chilled fluid set point. As the cooler load varies, the cooler fluid temperature difference will change in proportion to the load as shown in Fig. 15. Usually the chiller size and leaving-fluid temperature set point are selected based on a full-load condition. At part load, the fluid temperature set point may be lower than required. If the leaving fluid temperature were allowed to increase at part load, the efficiency of the machine would increase.

Temperature difference reset allows for the leaving temperature set point to be reset upward as a function of the fluid temperature difference or, in effect, the building load.

To use Water Temperature Difference Reset, four variables must be configured. They are: Cooling Reset Type (*Configuration* $\rightarrow RSET \rightarrow CRST$), Delta T No Reset Temp (Setpoints $\rightarrow COOL \rightarrow CRT1$), Delta T Full Reset Temp $(Setpoints \rightarrow COOL \rightarrow CRT2)$ and Degrees Cool Reset $(Setpoints \rightarrow COOL \rightarrow DGRC)$. In the following example using Water Temperature Difference Reset, the chilled water temperature will be reset by 5.0° F (2.8° C) when the ΔT is 2° F (1.1° C) and 0° F (0° C) reset when the ΔT is 10° F. The variable *CRT1* should be set to the cooler temperature difference (ΔT) where no chilled water temperature reset should occur. The variable *CRT2* should be set to the cooler temperature difference where the maximum chilled water temperature reset should occur. The variable *DGRC* should be set to the maximum amount of reset desired. To verify that reset is functioning correctly proceed to **Run Status** $\rightarrow VIEW$, and subtract the active set point (SETP) from the control point (CTPT) to determine the degrees reset. See Fig. 15 and Table 29.

Other, indirect means of estimating building load and controlling temperatures reset are also available and are discussed below. See Fig. 16.

To use Outdoor Air Temperature Reset, four variables must be configured. They are: Cooling Reset Type (*Configuration* \rightarrow *RSET* \rightarrow *CRST*), OAT No Reset Temp (*Setpoints* \rightarrow *COOL* \rightarrow *CRO1*), OAT Full Reset Temp (*Setpoints* \rightarrow *COOL* \rightarrow *CRO2*) and Degrees Cool Reset (*Setpoints* \rightarrow *COOL* \rightarrow *DGRC*). In the following example, the outdoor air temperature reset example provides 0° F (0° C) chilled water set point reset at 85.0 F (29.4 C) outdoor-air temperature and 10.0° F (5.5° C) reset at 55.0 F (12.8 C) outdoor-air temperature. See Fig. 17 and Table 30.

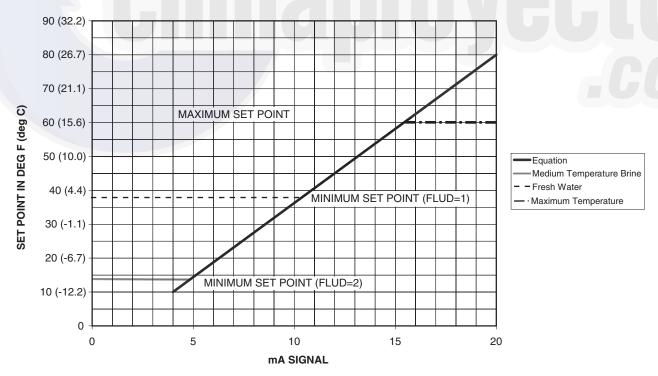


Fig. 14 — 4 to 20 mA Set Point Control

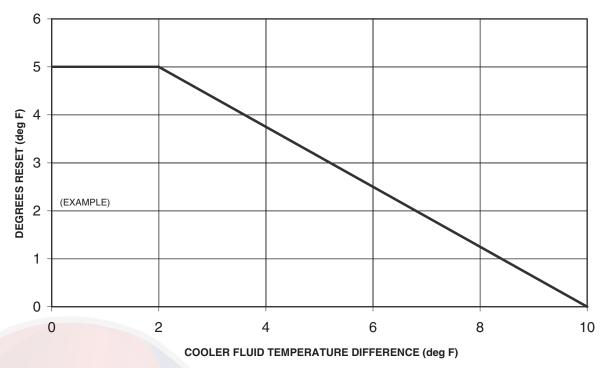


Fig. 15 — Water Temperature Difference Reset

EWT — Entering Water Temperature **LWT** — Leaving Water Temperature

Fig. 16 — Chilled Water Temperature Control

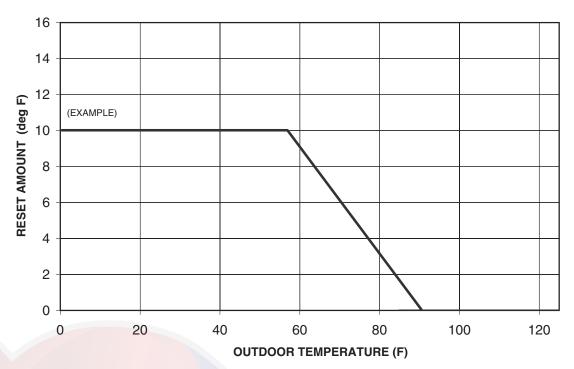


Fig. 17 — Outdoor Air Temperature Reset

Climaproyectos

Table 29 — Water Temperature Difference Reset Configuration

MODE	KEYPAD ENTRY	DISPLAY	ITEM EXPANSION	COMMENT
CONFIGURATION	ENTER	DISP		
	+	UNIT		
	+	SERV		
	+	OPTN		
	+	RSET	Reset Cool and Heat Tmp	
	ENTER	CRST	Cooling Reset Type	
	ENTER	0	No Reset	
	ENTER	0	No Reset	Flashing to indicate Edit mode. May require Password
	₩ / ♠	2	Delta T Temp	Use up or down arrows to change value to 2.
	ENTER	2		Accepts the change.
	ESCAPE	CRST		
	ESCAPE			At mode level
SETPOINTS	+ / +			Change to Setpoints Mode
	ENTER	COOL	Cooling Setpoints	
	ENTER	CSP.1	Cooling Setpoint 1	
	↓ x 4	CRV.2		
	+	CRT1	Delta T No Reset Temp	Cooler Temperature difference where no temperature reset is required.
	ENTER	0		Value of CRT1
	ENTER	0		Flashing to indicate Edit mode
	1	10.0		Value of No Temperature Reset, 10 from the example.
	ENTER	10.0		Accepts the change.
	ESCAPE	CRT1		
	+	CRT2	Delta T Full Reset Temp	Cooler Temperature difference where full temperature reset, DGRC is required.
	ENTER	0		Value of CRT2.
	ENTER	0		Flashing to indicate Edit mode
	1	2.0		Value of full Temperature Reset, 2 from the example.
	ENTER	2.0		Accepts the change.
	ESCAPE	CRT2		
	x 4	CRS2		
	+	DGRC	Degrees Cool Reset	Amount of temperature reset required.
	ENTER	0		Value of DGRC
	ENTER	0		Flashing to indicate Edit mode
	1	5.0		Amount of Temperature Reset required, 5 from the example.
	ENTER	5.0		Accepts the change.
	ESCAPE	DGRC		

NOTE: **Bold** values indicate sub-mode level.

Table 30 — OAT Reset Configuration

MODE	KEYPAD ENTRY	DISPLAY	ITEM EXPANSION	COMMENT
CONFIGURATION	ENTER	DISP		
	+	UNIT		
	+	SERV		
	+	OPTN		
	+	RSET	Reset Cool and Heat Tmp	
	ENTER	CRST	Cooling Reset Type	
	ENTER	0	No Reset	
	ENTER	0	No Reset	Flashing to indicate Edit mode. May require Passwore
	+ / +	1	Out Air Temp	Use up or down arrows to change value to 1.
	ENTER	1		Accepts the change.
	ESCAPE	CRST		
	ESCAPE			At mode level
SETPOINTS	¥ / f			Change to Setpoints Mode
	ENTER	COOL	Cooling Setpoints	
	ENTER	CSP.1	Cooling Setpoint 1	
	₩ x 6	CRT.2		
	+	CRO1	OAT No Reset Temp	Outdoor Temperature where no temperature reset is required.
	ENTER	0		Value of CRO1
	ENTER	0		Flashing to indicate Edit mode
	1	85.0		Value of No Temperature Reset, 85 from the example
	ENTER	85.0		Accepts the change.
	ESCAPE	CRO1		
	+	CRO2	OAT Full Reset Temp	Outdoor Temperature where full temperature reset, DGRC is required.
	ENTER	0		Value of CRO2.
	ENTER	0		Flashing to indicate Edit mode
	1	55.0		Value of full Temperature Reset, 55 from the example
	ENTER	55.0		Accepts the change.
	ESCAPE	CRO2		
	+	CRS1		
	1	CRS2		
	+	DGRC	Degrees Cool Reset	Amount of temperature reset required.
	ENTER	0		Value of DGRC
	ENTER	0		Flashing to indicate Edit mode
	1	10.0		Amount of Temperature Reset required, 10 from the example.
	ENTER	10.0		Accepts the change.
	ESCAPE	DGRC		

NOTE: **Bold** values indicate sub-mode level.

To use Space Temperature Reset in addition to the energy management module, four variables must be configured. They are: Cooling Reset Type (*Configuration* \rightarrow *RSET* \rightarrow *CRST*), Space T No Reset Temp (*Setpoints* \rightarrow *COOL* \rightarrow *CRS2*) and Degrees Cool Reset (*Setpoints* \rightarrow *COOL* \rightarrow *DGRC*). In the following space temperature reset example, 0° F (0° C) chilled water set point reset at 72.0 F (22.2 C) space temperature and 6.0° F (3.3° C) reset at 68.0 F (20.0 C) space temperature. See Fig. 18 and Table 31.

To use 4-20 mA Temperature Reset in addition to the energy management module, four variables must be configured. They are: Cooling Reset Type (*Configuration*→*RSET* → *CRST*), Current No Reset Val (*Setpoints*→*COOL*→*CRV1*), Current Full Reset Val (*Setpoints*→*COOL*→*CRV2*) and Degrees Cool Reset (*Setpoints*→*COOL*→*DGRC*). In the

following example, at 4 mA no reset takes place. At 20 mA, 5° F (2.8° C) chilled water set point reset is required. See Fig. 19 and Table 32.

⚠ CAUTION

Care should be taken when interfacing with other control systems due to possible power supply differences such as a full wave bridge versus a half wave rectification. Connection of control devices with different power supplies may result in permanent damage. *Comfort*Link controls incorporate power supplies with half wave rectification. A signal isolation device should be utilized if the signal generator incorporates a full wave bridge rectifier.

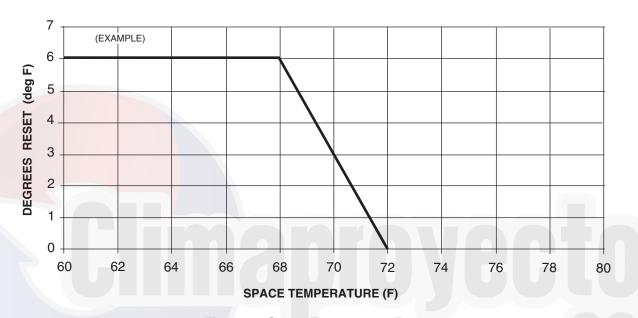


Fig. 18 — Space Temperature Reset

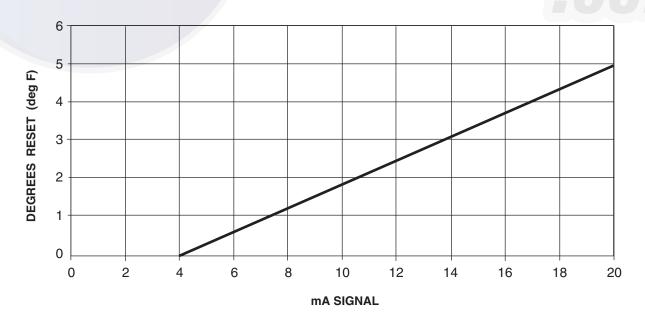


Fig. 19 — 4 to 20 mA Temperature Reset

Table 31 — Space Temperature Reset Configuration

MODE	KEYPAD ENTRY	DISPLAY	ITEM EXPANSION	COMMENT
CONFIGURATION	ENTER	DISP		
	+	UNIT		
	+	SERV		
	+	OPTN		
	+	RSET	Reset Cool and Heat Tmp	
	ENTER	CRST	Cooling Reset Type	
	ENTER	0	No Reset	
	ENTER	0	No Reset	Flashing to indicate Edit mode. May require Passwor
	₩ / ♠	4	Space Temp	Use up or down arrows to change value to 4.
	ENTER	4		Accepts the change.
	ESCAPE	CRST		
	ESCAPE			At mode level
SETPOINTS	₩/+			Change to Setpoints Mode
	ENTER	COOL	Cooling Setpoints	
	ENTER	CSP.1	Cooling Setpoint 1	
	₩ x8	CRO2		
	₩	CRS1	Space T No Reset Temp	Space Temperature where no temperature reset is required.
	ENTER	0		Value of CRS1
	ENTER	0		Flashing to indicate Edit mode
	1	72.0		Value of No Temperature Reset, 72 from the example
	ENTER	72.0		Accepts the change.
	ESCAPE	CRS1		
	•	CRS2	Space T Full Reset Temp	Space Temperature where full temperature reset, DGRC is required.
	ENTER	0		Value of CRS2.
	ENTER	0		Flashing to indicate Edit mode
	1	68.0		Value of full Temperature Reset, 68 from the example
	ENTER	68.0		Accepts the change.
	ESCAPE	CRS2		
	1	DGRC	Degrees Cool Reset	Amount of temperature reset required.
	ENTER	0		Value of DGRC
	ENTER	0		Flashing to indicate Edit mode
	<u> </u>	6.0		Amount of Temperature Reset required, 6 from the example.
	ENTER	6.0		Accepts the change.
	ESCAPE	DGRC		

NOTE: **Bold** values indicate sub-mode level.

Table 32 — 4 to 20 mA Temperature Reset Configuration

MODE	KEYPAD ENTRY	DISPLAY	ITEM EXPANSION	COMMENT
CONFIGURATION	ENTER	DISP		
	+	UNIT		
	+	SERV		
	1	OPTN		
	1	RSET	Reset Cool and Heat Tmp	
	ENTER	CRST	Cooling Reset Type	
	ENTER	0	No Reset	
	ENTER	0	No Reset	Flashing to indicate Edit mode. May require Password
	₩/♠	3	4-20 mA Input	Use up or down arrows to change value to 3.
	ENTER	3		Accepts the change.
	ESCAPE	CRST		
	ESCAPE			At mode level
SETPOINTS	↓ / ♠			Change to Setpoints Mode
	ENTER	COOL	Cooling Setpoints	
	ENTER	CSP.1	Cooling Setpoint 1	
	₩ x2	CSP.3	Cooling Setpoint 3	
	1	CRV1	Current No Reset Val	Outdoor Temperature where no temperature reset is required.
	ENTER	0		Value of CRV1
	ENTER	0		Flashing to indicate Edit mode
	T T	4.0		Value of No Temperature Reset, 4 from the example.
	ENTER	4.0		Accepts the change.
	ESCAPE	CRV1		
	1	CRV2	Current Full Reset Val	Current value where full temperature reset, DGRC is required.
	ENTER	0		Value of CRV2.
	ENTER	0		Flashing to indicate Edit mode
		20.0		Value of full Temperature Reset, 20 from the example
	ENTER	20.0		Accepts the change.
	ESCAPE	CRV2		
	₩ × 6	CRS2		
	+	DGRC	Degrees Cool Reset	Amount of temperature reset required.
	ENTER	0		Value of DGRC
	ENTER	0		Flashing to indicate Edit mode
	1	5.0		Amount of Temperature Reset required, 5 from the example.
	ENTER	5.0		Accepts the change.
	ESCAPE	DGRC		

NOTE: **Bold** values indicate sub-mode level.

Demand Limit — Demand limit is a feature that allows the unit capacity to be limited during periods of peak energy usage. Once a Demand Limit command has been initiated, the unit capacity will be limited to the commanded value and will not exceed that value.

Three types of demand limiting are available on the 30RB units. The first type is through switch control, which will reduce the maximum capacity by up to three user-configurable percentages. Single-Step Switch Control Demand Limit is standard on all 30RB units. To utilize Two and Three-Step Switch Control Demand Limit, the Energy Management Module is required. The second type of demand limiting is by 4 to 20 mA signal input, which will reduce the maximum capacity linearly from 100% at a 4 mA input signal (no reduction) down to the user-configurable level at a 20 mA input signal. To utilize 4 to 20 mA Demand Limit, the Energy Management Module is required. The third type of demand limiting requires a programmable controller (Open or CCN) or UPC, and writes a demand limit directly to the control.

Using the scrolling marquee, the Active Demand Limit Val (*Run Status* → *VIEW* → *LIM*) will display the current demand limit value. A value of 100 will allow the machine to run fully loaded if required. Any value less than 200 will limit the capacity of the machine.

To use demand limit, select the type of demand limiting to use. Then configure the demand limit set points based on the type selected.

SWITCH CONTROLLED — Single-Step Switch Control Demand Limit is standard on all 30RB units. To utilize Two or Three-Step Switch Control Demand Limit, the Energy Management Module is required. The three steps are achieved through two sets of dry contacts. The contacts for Demand Limit Switch 1 must be connected to TB5-5, 14. The contacts for Demand Limit Switch 2 must be connected to TB6-14,15. See Fig. 20.

Several parameters must be configured for switch controlled demand limit:

- Demand Limit Select (Configuration→RSET→DMDC)
- Switch Limit Setpoint 1 (Setpoints -> MISC -> DLS1)
- Switch Limit Setpoint 2 (Setpoints→MISC→DLS2), if Two-Step Switch Control is desired
- Switch Limit Setpoint 3 (Setpoints→MISC→DLS3), if Three-Step Switch Control is desired

The position of the Demand Limit Switch contacts shown in Fig. 20 will allow for up to three steps of demand limit according to Table 33.

The actual positions of Demand Limit Switches 1 and 2 seen by the control can be viewed using the scrolling marquee or NavigatorTM display by accessing the items $Inputs \rightarrow GEN.1 \rightarrow DLS1$ or $Inputs \rightarrow GEN.1 \rightarrow DLS2$.

Follow the example in Table 34 to enable the function and configure the step demand limit for 80%, 60%, and 25% capacity limit based on the switch position described above.

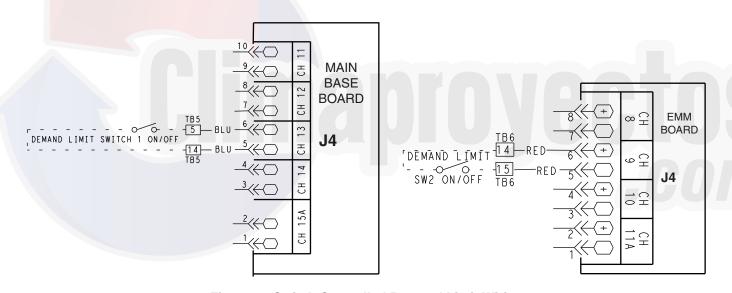


Fig. 20 — Switch Controlled Demand Limit Wiring

Table 33 — Demand Limit Switch Status Reponse

SWITC	I STATUS	DEMAND LIMIT VALUE
Demand Limit Switch 1	Demand Limit Switch 2	SCROLLING MARQUEE/NAVIGATOR DISPLAY ITEM
Open	Open	None
Closed	Open	Setpoints→MISC→DLS1
Open	Closed	Setpoints→MISC→DLS2
Closed	Closed	Setpoints→MISC→DLS3

Table 34 — Switch Controlled Demand Limit (Scrolling Marquee and Navigator™ Display)

ITEM	EXPANSION	PATH	SCROLLING	NAVIGATOR	
I I EIVI	TIEW EXPANSION	РАІП	Value	Expansion	DISPLAY
DMDC	Demand Limit Select	Configuration→RSET	1	Switch	Switch
DLS1	Switch Limit Setpoint 1	Setpoints→MISC	80	_	80
DLS2	Switch Limit Setpoint 2	Setpoints→MISC	60	_	60
DLS3	Switch Limit Setpoint 3	Setpoints→MISC	25	_	25

In the example in Table 34, when Demand Limit Switch 1 is closed and Demand Limit Switch 2 is open, the maximum chiller capacity will be reduced to 80%. When Demand Limit Switch 1 is open and Demand Limit Switch 2 is closed, the maximum chiller capacity will be reduced to 60%. Similarly, when both Demand Limit Switches are closed, the maximum chiller capacity will be reduced to 25%.

EXTERNALLY POWERED (4 to 20 mA Controlled) —

The Energy Management Module is required for 4 to 20 mA demand limit control. The 4 to 20 mA positive signal is connected to TB6-1 and the negative to TB6-2. Additionally, a field-supplied 250-ohm, ¹/₂-watt resistor must be installed across TB6-1 and TB6-2. See Fig. 21. The Energy Management Module accepts a 0 to 5 vdc input. The resistor converts the 4 to 20 mA signal to a 0 to 5 vdc input.

Fig. 21 — 4 to 20 mA Demand Limit Input Wiring

The input signal seen by the control can be viewed using the scrolling marquee or Navigator display by accessing the item $Inputs \rightarrow GEN.1 \rightarrow DMND$.

To configure demand limit for 4 to 20 mA control, three parameters must be configured:

- Demand Limit Select (*Configuration→RSET→DMDC*)
- mA for 100% Demand Limit (Configuration→RSET→DMMX)
- mA for 0% Demand Limit (Configuration $\rightarrow RSET \rightarrow DMZE$).

⚠ CAUTION

Care should be taken when interfacing with other control systems due to possible power supply differences such as a full wave bridge versus a half wave rectification. Connection of control devices with different power supplies may result in permanent damage. *Comfort*Link controls incorporate power supplies with half wave rectification. A signal isolation device should be utilized if the signal generator incorporates a full wave bridge rectifier.

In the following example, a 4 mA signal is Demand Limit 100% and a 20 mA Demand Limit signal is 0%. The demand limit is a linear interpolation between the two values entered. See Table 35 and Fig. 22. In Fig. 22, if the machine receives a 12 mA signal, the machine controls will limit the capacity to 50%.

Table 35 — 4 to 20 mA Demand Limit (Scrolling Marquee and Navigator Display)

ITEM	EXPANSION	PATH	SCROLLING	NAVIGATOR	
	EXPANSION	PAIN	Value	Expansion	DISPLAY
DMDC	Demand Limit Switch	Configuration→RSET	2	4-20 mA Input	4-20 mA Input
DMMX	mA for 100% Demand Lim	Configuration→RSET	4	_	4
DMZE	mA for 0% Demand Lim	Configuration→RSET	20		20

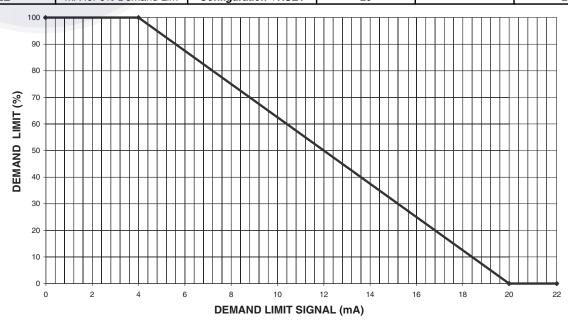


Fig. 22 — Demand Limit Response to mA Signal

CCN CONTROLLED — To configure demand limit for CCN control, the unit Operating Type Control must be in CCN control (*Operating Modes* → *SLCT* → *OPER*=2), and must be controlled by a programmable controller (Open or CCN) or UPC. By writing to the CCN point DEM_LIM (Status Display Table GENUNIT), the unit capacity can be controlled.

Remote Alarm and Alert Relays — The 30RB chiller can be equipped with a remote alert and remote alarm annunciator contacts. Both relays connected to these contacts must be rated for a maximum power draw of 10 va sealed, 25 va inrush at 24 volts. The alarm relay, indicating that the complete unit has been shut down can be connected to TB5-12 and TB5-13. For an alert relay, indicating that at least 1 circuit was off due to the alert, a field-supplied and installed relay must be connected between MBB-J3-CH25-3 and TB5-13.

Broadcast Configuration — The 30RB chiller is capable of broadcasting time, date, and holiday status to all elements in the CCN system. In the stand-alone mode, broadcast must be activated to utilize holiday schedules and adjust for daylight saving time. If the chiller is to be connected to a CCN system, determine which system element is to be the network broadcaster to all other system elements. Broadcast is activated and deactivated in the BRODEFS Table. It is accessible through Network Service Tool. It is not accessible through the scrolling marquee display.

Only one element should be configured as a broadcaster. If a broadcast is activated by a device that has been designated as a network broadcaster, then broadcasted time, date, and holiday status will be updated over the CCN system. If broadcast is enabled, a broadcast acknowledger must also be enabled. The acknowledger cannot be the same machine as the broadcasting machine.

ACTIVATE — The Activate variable enables the broadcast function of the *Comfort*Link controls. If this variable is set to 0, this function is not used and holiday schedules and daylight savings compensation are not possible. Setting this variable to 1 allows the machine to broadcast and receive broadcasts on the network. The following information is broadcast: the time with compensation for daylight savings, date, and holiday flag.

Set this variable to 2 for stand-alone units that are not connected to a CCN. With this configuration, daylight saving time and holiday determination will be done without broadcasting through the bus. This variable can only be changed when using ComfortVIEWTM software or Network Service Tool. This variable cannot be changed with the scrolling marquee display.

BROADCAST ACKNOWLEDGER — This configuration defines if the chiller will be used to acknowledge broadcast messages on the CCN bus. One broadcast acknowledger is required per bus, including secondary buses created by the use of a bridge. This variable can only be changed with Comfort-VIEW software or Network Service Tool. This variable cannot be changed with the scrolling marquee display.

Alarm Control

ALARM ROUTING CONTROL — Alarms recorded on the chiller can be routed through the CCN. To configure this option, the *Comfort*Link control must be configured to determine which CCN elements will receive and process alarms. Input for the decision consists of eight digits, each of which can be set to either 0 or 1. Setting a digit to 1 specifies that alarms will be sent to the system element that corresponds to that digit. Setting all digits to 0 disables alarm processing. The factory default is 00000000. See Fig. 23. The default setting is based on the assumption that the unit will not be connected to a network. If the network does not contain a ComfortVIEW, ComfortWORKS®, TeLink, DataLINKTM, or BAClink module, enabling this feature will only add unnecessary activity to the CCN communication bus.

This option can be modified with Network Service Tool. It cannot be modified with the scrolling marquee display.

Typical configuration of the Alarm Routing variable is 11010000. This Alarm Routing status will transmit alarms to ComfortVIEW software, TeLink, BAClink, and DataLINK.

ALARM EQUIPMENT PRIORITY — The ComfortVIEW software uses the equipment priority value when sorting alarms by level. The purpose of the equipment priority value is to determine the order in which to sort alarms that have the same level. A priority of 0 is the highest and would appear first when sorted. A priority of 7 would appear last when sorted. For example, if two chillers send out identical alarms, the chiller with the higher priority would be listed first. The default is 4. This variable can only be changed when using ComfortVIEW software or Network Service Tool. This variable cannot be changed with the scrolling marquee display.

COMMUNICATION FAILURE RETRY TIME — This variable specifies the amount of time that will be allowed to elapse between alarm retries. Retries occur when an alarm is not acknowledged by a network alarm acknowledger, which may be either a ComfortVIEW software or TeLink. If acknowledgement is not received, the alarm will be re-transmitted after the number of minutes specified in this decision. This variable can only be changed with ComfortVIEW software or Network Service Tool. This variable cannot be changed with the scrolling marquee display.

RE-ALARM TIME — This variable specifies the amount of time that will be allowed to elapse between re-alarms. A realarm occurs when the conditions that caused the initial alarm continue to persist for the number of minutes specified in this decision. Re-alarming will continue to occur at the specified interval until the condition causing the alarm is corrected. This variable can only be changed with ComfortVIEW software or Network Service Tool. This variable cannot be changed with the scrolling marquee display.

ALARM SYSTEM NAME — This variable specifies the system element name that will appear in the alarms generated by the unit control. The name can be up to 8 alphanumeric characters in length. This variable can only be changed with ComfortVIEW software or Network Service Tool. This variable cannot be changed with the scrolling marquee display.

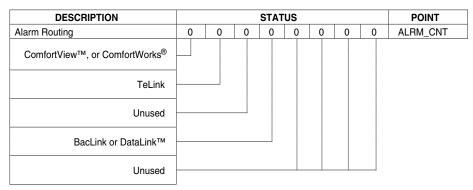


Fig. 23 — Alarm Routing Control

PRE-START-UP

IMPORTANT: Complete the Start-Up Checklist for 30RB Liquid Chillers at the end of this publication.

The checklist assures proper start-up of a unit, and provides a record of unit condition, application requirements, system information, and operation at initial start-up.

Do not attempt to start the chiller until the following checks have been completed.

System Check

- Check auxiliary components, such as the chilled fluid circulating pump, air-handling equipment, or other equipment to which the chiller supplies liquid are operational. Consult manufacturer's instructions. If the unit has field-installed accessories, be sure all are properly installed and wired correctly. Refer to unit wiring diagrams.
- Open compressor suction (if equipped) and discharge shutoff valves.
- 3. Open liquid line shutoff valves.
- 4. Fill the chiller fluid circuit with clean water (with recommended inhibitor added) or other non-corrosive fluid to be cooled. Bleed all air out of high points of system. An air vent pipe plug is included with the cooler. If outdoor temperatures are expected to be below 32 F (0° C), sufficient inhibited propylene glycol or other suitable corrosion inhibited antifreeze should be added to the chiller water circuit to prevent possible freeze-up.

The chilled water loop must be cleaned before the unit is connected. Units supplied with the accessory hydronic package include a run in screen. If the run-in screen is left in the suction guide/strainer, it is recommended that the Service Maintenance be set to alert the operator within 24 hours of start-up to be sure that the run-in screen in the suction guide/strainer is removed. To set the time for the parameter, go to *Time Clock*—*MCFG*—*W.FIL*. Values for this item are counted as days. Refer to the hydronic pump package literature if unit is equipped with the optional hydronic pump package.

5. Check tightness of all electrical connections.

- 6. Oil should be visible in the compressor sight glass. An acceptable oil level in the compressor is from ³/₄ to ⁷/₈ full sight glass. Adjust the oil level as required. No oil should be removed unless the crankcase heater has been energized for at least 24 hours. See Oil Charge section for Carrier-approved oils.
- 7. Electrical power source must agree with unit nameplate.
- 8. Crankcase heaters must be firmly seated under compressor, and must be energized for 24 hours prior to start-up.
- 9. Verify power supply phase sequence. Check reverse rotation board. If lower (red) LED is blinking, the phase sequence is incorrect. Reverse two of the power wires at the main terminal block. Units with dual power point connection utilize two reverse rotation boards. Check both for proper phase sequence.
- Check compressors and compressor mounting sled. Compressor shipping braces and shipping bolts must be removed

START-UP

A CAUTION

Do not manually operate contactors. Serious damage to the machine may result.

Actual Start-Up — Actual start-up should be done only under supervision of a qualified refrigeration technician.

- Be sure all shut off valves are open. Units are shipped from factory with suction valves (if equipped) open. Discharge and liquid line shut off valves are closed.
- Using the scrolling marquee display, set leaving-fluid set point (*Setpoints→COOL→CSP.1*). No cooling range adjustment is necessary.
- 3. If optional control functions or accessories are being used, the unit must be properly configured. Refer to Configuration Options section for details.
- 4. Start chilled fluid pump, if unit is not configured for pump control, (*Configuration→OPTN→PUMP*= 0).
- 5. Complete the Start-Up Checklist to verify all components are operating properly.
- 6. Turn ENABLE/OFF/REMOTE CONTACT switch to ENABLE position.
- Allow unit to operate and confirm that everything is functioning properly. Check to see that leaving fluid temperature agrees with leaving set point Control Point (Run Status → VIEW → CTPT).

Operating Limitations

TEMPERATURES — Unit operating temperature limits are listed in Table 36.

Table 36 — Temperature Limits for Standard Units

TEMPERATURE	F	С
Maximum Ambient Temperature	125	52
Minimum Ambient Temperature	32	0
Maximum Cooler EWT*	95	35
Maximum Cooler LWT	60	15
Minimum Cooler LWT†	40	4.4

LEGEND

EWT — Entering Fluid (Water) Temperature **LWT** — Leaving Fluid (Water) Temperature

*For sustained operation, EWT should not exceed 85 F (29.4 C). †Unit requires brine modification for operation below this temperature.

<u>Low Ambient Operation</u> — If unit operating temperatures below 32 F (0° C) are expected, refer to separate unit installation instructions for low ambient temperature operation using accessory low ambient temperature head pressure control, if not equipped. Contact a Carrier representative for details.

NOTE: Wind baffles and brackets must be field-fabricated and installed for all units using accessory low ambient head pressure control to ensure proper cooling cycle operation at low-ambient temperatures. See the 30RB Installation Instructions or the low ambient temperature head pressure control accessory installation instructions for more information.

A CAUTION

Brine duty application (below 40 F [4.4 C] leaving chilled water temperature) for chiller normally requires factory modification. Contact your Carrier representative for details regarding specific applications. Operation below 40 F (4.4 C) leaving chilled water temperature without modification can result in compressor failure.

VOLTAGE

<u>Main Power Supply</u> — Minimum and maximum acceptable supply voltages are listed in the Installation Instructions.

<u>Unbalanced 3-Phase Supply Voltage</u> — Never operate a motor where a phase imbalance between phases is greater than 2%.

To determine percent voltage imbalance:

% Voltage Imbalance =
$$100 \text{ x}$$
 $\frac{\text{max voltage deviation from avg voltage}}{\text{average voltage}}$

The maximum voltage deviation is the largest difference between a voltage measurement across 2 legs and the average across all 3 legs.

Example: Supply voltage is 240-3-60.

1. Determine average voltage:

Average voltage =
$$\frac{243+236+238}{3}$$

= $\frac{717}{3}$
= 239

2. Determine maximum deviation from average voltage:

Maximum deviation is 4 v.

3. Determine percent voltage imbalance:

% Voltage Imbalance =
$$100 \times \frac{4}{239}$$

This voltage imbalance is satisfactory as it is below the maximum allowable of 2%.

IMPORTANT: If the supply voltage phase imbalance is more than 2%, contact the local electric utility company immediately. Do not operate unit until imbalance condition is corrected.

MINIMUM FLUID LOOP VOLUME — To obtain proper temperature control, loop fluid volume must be at least 3 gallons per ton (3.25 L per kW) of chiller nominal capacity for air conditioning and at least 6 gallons per ton (6.5 L per kW) for process applications or systems that must operate at low ambient temperatures (below 32 F [0° C]). Refer to application information in Product Data literature for details.

FLOW RATE REQUIREMENTS — Standard chillers should be applied with nominal flow rates within those listed in the Minimum and Maximum Cooler Flow Rates table. Higher or lower flow rates are permissible to obtain lower or higher temperature rises. Minimum flow rates must be exceeded to assure turbulent flow and proper heat transfer in the cooler. See Table 37.

A CAUTION

Operation below minimum flow rate could subject tubes to frost pinching in the tube sheet, resulting in failure of the cooler.

Consult application data section in the Product Data literature and job design requirements to determine flow rate requirements for a particular installation.

Table 37 — Minimum and Maximum Cooler Flow Rates
SIZES 060-300

30RB SIZE	MINIMUM COOLER FLOW RATE (gpm)	MAXIMUM FLOW RATE (gpm)	MINIMUM LOOP VOLUME (gal.)	MINIMUM COOLER FLOW RATE (I/s)	MAXIMUM COOLER FLOW RATE (I/s)	MINIMUM LOOP VOLUME (liters)
060	72	288	180	5	18	681
070	84	336	210	5	21	795
080	96	384	240	6	24	908
090	108	432	270	7	27	1022
100	120	480	300	8	30	1136
110	132	528	330	8	33	1249
120	144	576	360	9	36	1363
130	156	624	390	10	39	1476
150	180	720	450	11	45	1703
160	192	768	480	12	48	1817
170	204	816	510	13	51	1931
190	228	912	570	14	58	2158
210	252	950	630	16	60	2385
225	270	950	675	17	60	2555
250	300	950	750	19	60	2839
275	330	950	825	21	60	3123
300	360	950	900	23	60	3407

SIZES 315-390

30RB SIZE	MINIMUM COOLER FLOW RATE (gpm)		MAXIMUM COOLER FLOW RATE (gpm)		MIN LOOP VOLUME	FLOW	COOLER RATE (s)	MAXIMUN FLOW (I/	RATE	MIN LOOP VOLUME
	Module A	Module B	Module A	Module B	(gal.)	Module A	Module B	Module A	Module B	(liters)
315	192	192	768	768	945	12	12	48	48	3577
330	204	192	816	768	990	12	12	51	48	3748
345	204	204	816	816	1035	13	13	51	51	3918
360	228	204	912	816	1080	14	13	58	51	4088
390	228	228	912	912	1170	14	14	58	58	4429

OPERATION

Sequence of Operation — With a command to start the chiller, the cooler pump will start. After verifying water flow, the control will monitor the entering and leaving water temperature. At any time that a compressor is not operating, its crankcase heater is active. If the need for mechanical cooling is determined, the control decides which circuit and compressor to start. The compressor will deenergize the crankcase heater as it starts. Compressors will be staged with minimum load control (if equipped and configured) to maintain LWT set point.

Shutdown of each circuit under normal conditions occurs in increments, starting with the minimum load control (if equipped) and finishing with the last running compressor. Once minimum load control is disabled, one compressor is shut down. Eight seconds later the next compressor will shut down. The process will continue until all of the compressors are shut down. The EXV will close completely, 1 minute after the last compressor has shut down. There are several abnormal conditions that, if detected, will shut down the circuit immediately. In this case, minimum load control and all compressors are turned off *without* an 8-second interval between them. The cooler pump will remain ON for 20 seconds after the last compressor has been turned OFF.

Dual Chiller Sequence of Operation — With a command to start the chiller, the master chiller determines which chiller will become the lead chiller based on *Configuration→RSET→LLBL* and *Configuration→RSET→LLBD*. The lead chiller is always started first and the lag chiller is held at zero percent capacity by the master chiller forcing the lag demand limit value to 0%. The lead chiller's water pump will be started. The lag chiller's water pump shall be maintained off if

Configuration \rightarrow **RSET** \rightarrow **LAGP=0**. The internal algorithm of lead chiller will control capacity of the lead chiller.

If Lead Pulldown Time ($Configuration \rightarrow RSET \rightarrow LPUL$) has been configured, the lead chiller will continue to operate alone for that specified time. After the Lead Pulldown Time timer has elapsed, if the lead chiller is fully loaded and either all available compression is on or at the master demand limit value, then the lag start timer ($Configuration \rightarrow RSET \rightarrow LLDY$) is initiated. When the pulldown timer and lag start timer have elapsed and the Combined Leaving Chilled Water Temperature is more than 3° F (1.7° C) above the set point, then the lag chiller is started.

If the lag chiller's water pump was not started when the machines went into occupied mode, then the lag chiller water pump will be started. The lag chiller will start when the master chiller forcing the lag chiller demand limit value (LAG_LIM) to the master's demand limit value. If lead/lag capacity balance is selected, once the lag chiller has started, the master chiller will try to keep the difference in capacity between lead and lag to less than 20%. The master chiller will then be responsible for water loop capacity calculation, and will determine which chiller, the lead or lag, will increase or decrease capacity. When the load reduces, the lag chiller will unload first. To accomplish this, the lead chiller set point is decreased by 4° F (–2.2° C) until the lag chiller unloads.

To configure the two chillers for dual chiller operation, the master chiller must have the Control Method variable (Operating $Mode \rightarrow SLCT \rightarrow OPER$) set to meet the job requirements. The slave chiller must be set to Control Method variable ($Operating Mode \rightarrow SLCT \rightarrow OPER$) = 2 (CCN Control) and the remote-off-enable switch must be in the enable position. The master chiller and the slave chiller CCN addresses (Configuration $\rightarrow OPTN \rightarrow CCNA$) must be configured. The master

and slave chillers can be addressed from 1 to 239. Each device connected to the network must have its own unique address.

Both chillers must have the same CCN Bus Number (*Configuration* \rightarrow *OPTN* \rightarrow *CCNB*). Lead/Lag Chiller Enable must be set for both chillers by configuring Master/Slave Select (*Configuration* \rightarrow *RSET* \rightarrow *MSSL*) to 1 (Master) for the master chiller. The slave chiller Master/Slave Select must be set to 2 (Slave). The master chiller can be configured to use Lead/Lag Balance (*Configuration* \rightarrow *RSET* \rightarrow *LLBL*) to rotate the lead and lag chillers after a configured number of hours of operation. The Lag Start Delay (*Configuration* \rightarrow *RSET* \rightarrow *LLBD*) can be configured. This prevents the Lag chiller from starting until the lead chiller is fully loaded and the delay has elapsed.

Operating Modes

MODE 1 (*Operating Mode→MODE→MD01*) — Startup Delay in Effect

<u>Criteria for Mode</u> — Tested when the unit is started. This mode is active when the Minutes Off Time (*Configuration* → *OPTN*→*DELY*) timer is active.

<u>Action Taken</u> — The unit will not start until the timer has expired.

<u>Termination</u> — The mode will terminate when the timer expires.

<u>Possible Causes</u> — This mode is in effect only due to the Minutes Off Time timer.

MODE 2 (*Operating Mode* \rightarrow *MODE* \rightarrow *MD02*) — Second Setpoint in Use

<u>Criteria for Mode</u> — Tested when the unit is ON. This mode is active when Cooling Setpoint 2 (*Setpoints*→*COOL*→ *CSP.2*) or Ice Setpoint (*Setpoints*→*COOL*→*CSP.3*) is in use. While in this mode, the Active Setpoint (*Run Status* → *VIEW*→*SETP*) will show the *CSP.2* or *CSP.3* value.

Action Taken — The unit will operate to the Cooling Setpoint 2 (*CSP.2*) or Ice Setpoint (*CSP.3*).

<u>Termination</u> — This mode will terminate when the Cooling Setpoint 2 (*CSP.2*) or Ice Setpoint (*CSP.3*) is no longer in use. <u>Possible Causes</u> — This mode is in effect only due to pro-

gramming options.

MODE 3 (*Operating Mode→MODE→MD03*) — Reset in

<u>Criteria for Mode</u> — Tested when the unit is ON. This mode is active when Temperature Reset (*Configuration*→*RSET*→ *CRST*) is enabled either by *CRST*=1 (Outside Air Temperature), *CRST*=2 (Return Water), *CRST*=3 (4-20 mA Input), or *CRST*=4 (Space Temperature) and is active.

<u>Action Taken</u> — The Active Setpoint (*Run Status*→*VIEW* → *SETP*) will be modified according to the programmed information and will be displayed as the Control Point (*Run Status*→*VIEW*→*CTPT*).

<u>Termination</u> — This mode will terminate when the Temperature Reset is not modifying the active leaving water set point, so *SETP* is the same as *CTPT*.

<u>Possible Causes</u> — This mode is in effect only due to programming options.

MODE 4 (*Operating Mode→MODE→MD04*) — Demand Limit Active

<u>Criteria for Mode</u> — Tested when the unit is ON. This mode is active when Demand Limit (*Configuration*→*RSET*→ *DMDC*) is enabled either by *DMDC*=1 (Switch), *DMDC*=2 (4-20 mA Input) or the Night Time Low Sound Capacity Limit (*Configuration*→*OPTN* →*LS.LT*).

<u>Action Taken</u> — The Active Demand Limit Value (*Run Status* → *VIEW* → *LIM*) will display the current demand limit

according to the programmed information and the unit's capacity will be reduced to the amount shown or lower.

<u>Termination</u> — This mode will terminate when the Demand Limit command has been removed.

<u>Possible Causes</u> — This mode is in effect when capacity is being limited by the demand limit function.

MODE 5 (*Operating Mode→MODE→MD05*) — Ramp Loading Active

<u>Criteria for Mode</u> — Tested when the unit is ON. This mode is active when Ramp Loading (*Configuration* \rightarrow *OPTN* \rightarrow *RL.S*) is enabled and the following conditions are met:

- The leaving water temperature is more than 4° F (2.2° C) from the Control Point (*Run Status→VIEW→CTPT*), and
- 2. The rate of change of the leaving water temperature is greater than the Cool Ramp Loading (*Set Points*→*COOL*→*CRMP*).

<u>Action Taken</u> — The control will limit the capacity step increase until one of the two conditions in Mode 5 is no longer true.

<u>Termination</u> — This mode will terminate once both conditions in Mode 5 are no longer true.

<u>Possible Causes</u> — This mode is in effect only when capacity is being limited by the ramp loading function.

MODE 6 (*Operating Mode* \rightarrow *MODE* \rightarrow *MD06*) — Cooler Heater Active

<u>Criteria for Mode</u> — Tested when unit is ON or OFF. This mode is active when the cooler heater is energized, if the Outdoor Air Temperature (*Temperature*→*UNIT*→*OAT*) is less than the calculated value (Freeze Setpoint + Cooler Heater Delta T Setpoint [*Configuration*→*SERV*→*HTR*] default – 2° F [1.1° C]), and either the Leaving Water Temperature (*Temperature*→*UNIT*→*LWT*) or the Entering Water Temperature (*Temperature*→*UNIT*→*EWT*) are less than or equal to the Freeze Setpoint + Cooler Heater Delta T Setpoint (*HTR*).

The Freeze Setpoint is 34 F (1.1 C) for fresh water systems (*Configuration*→*SERV*→*FLUD*=1). The Freeze Setpoint is the Brine Freeze Setpoint (*Configuration*→*SERV*→*LOSP*) for Medium Temperature Brine systems (*Configuration*→*SERV*→*FLUD*=2).

Action Taken — The cooler heater will be energized.

<u>Termination</u> — The cooler heater will be deenergized when both the Entering Water Temperature (*EWT*) and Leaving Water Temperature (*LWT*) are above the Freeze Setpoint + Cooler Heater Delta T Setpoint (*HTR*).

<u>Possible Causes</u> — This mode will be enabled for freeze protection. If the temperatures are not as described above, check the accuracy of the outside air, entering and leaving water thermistors.

MODE 7 (*Operating Mode→MODE→MD07*) — Water Pump Rotation

<u>Criteria for Mode</u> — Tested when the unit is ON or OFF. This mode is active when the Cooler Pump Sequence (*Configuration*→*OPTN*→ *PUMP*) =2 (2 Pumps Automatic Changeover) and the Pump Rotation Delta Timer (*Configuration*→*OPTN* →*ROT.P*) has expired.

Action Taken — The control will switch the operation of the pumps. The lead pump will be operating normally. The lag pump will be started, becoming the lead, and then the original lead pump will be shut down.

<u>Termination</u> — This mode will terminate when the pump operation has been completed.

<u>Possible Causes</u> — This mode is in effect only due to programming options.

MODE 8 (*Operating Mode→MODE→MD08*) — Pump Periodic Start

<u>Criteria for Mode</u> — This mode is active when the cooler pump is started for the Periodic Pump Start configuration (*Configuration* \rightarrow *OPTN* \rightarrow *PM.PS*=YES).

Action Taken — If the pump has not run that day, a pump will be started and will run for 2 seconds at 2:00 PM. If the machine is equipped with dual pumps, Pump no. 1 will run on even days (such as day 2, 4, 6 of the month). Pump no. 2 will run on odd days (such as day 1, 3, 5 of the month).

<u>Termination</u> — This mode will terminate when the pump shuts down.

<u>Possible Causes</u> — This mode is in effect only due to programming options.

MODE 9 (*Operating Mode→MODE→MD09*) — Night Low Noise Active

<u>Criteria for Mode</u> — This mode is active when the Night Time Low Noise Option has been configured and the time is within the configured time. Programming a Night Low Noise Start Time (*Configuration* \rightarrow *OPTN* \rightarrow *LS.ST*) and a Night Low Noise End Time (*Configuration* \rightarrow *OPTN* \rightarrow *LS.ND*) configures the option.

Action Taken — The control will raise the head pressure set point to reduce the number of condenser fans on, thereby reducing the sound of the machine. Additionally, if the Night Time Low Sound Capacity Limit (*Configuration*—*OPTN*—*LS.LT*) has been configured, the units capacity will be limited to the programmed level.

<u>Termination</u> — This mode will terminate once the Night Low Noise End Time (*LS.ND*) has been reached.

<u>Possible Causes</u> — This mode is in effect only due to programming options.

MODE 10 (*Operating Mode→MODE→MD10*) — System Manager Active

<u>Criteria for Mode</u> — Tested when the unit is ON or OFF. This mode is active if a System Manager such as Building Supervisor, Chillervisor System Manager, or another CCN device is controlling the machine.

<u>Action Taken</u> — The machine will respond to the specific command received from the System Manager.

 $\frac{Termination}{Manager\ control\ is\ released}.$ The mode will be terminated if the System

<u>Possible Causes</u> — This mode is in effect only due to programming options.

MODE 11 (*Operating Mode→MODE→MD11*) — Mast Slave Ctrl Active

<u>Criteria for Mode</u> — Tested if the machine is ON. This mode is active if the Master Slave Control has been enabled. Having 2 machines programmed, one as the master (*Configuration* → *RSET* → *MSSL*=1 [Master]) and the other as a slave (*Configuration* → *RSET* → *MSSL*=2 [Slave]).

<u>Action Taken</u> — Both the master and slave machine will respond to the capacity control commands issued by the master controller. This may include control point changes and demand limit commands.

<u>Termination</u> — This mode will terminate when the Master Slave Control has been disabled.

<u>Possible Causes</u> — This mode is in effect only due to programming options.

MODE 12 (*Operating Mode* \rightarrow *MODE* \rightarrow *MD12*) — Auto Changeover Active

<u>Criteria for Mode</u> — This mode is not supported for Cooling Only units.

Action Taken — None.

<u>Termination</u> — None.

<u>Possible Causes</u> — This mode is in effect only due to programming options.

MODE 13 (*Operating Mode→MODE→MD13*) — Free Cooling Active

<u>Criteria for Mode</u> — This mode is not supported for Cooling Only units.

Action Taken — None.

<u>Termination</u> — None.

<u>Possible Causes</u> — This mode is in effect only due to programming options.

MODE 14 (*Operating Mode→MODE→MD14*) — Reclaim Active

<u>Criteria for Mode</u> — This mode is not supported for Cooling Only units.

Action Taken — None.

Termination — None.

<u>Possible Causes</u> — This mode is in effect only due to programming options.

MODE 15 (*Operating Mode→MODE→MD15*) — Electric Heat Active

<u>Criteria for Mode</u> — This mode is not supported for Cooling Only units.

Action Taken — None.

<u>Termination</u> — None.

<u>Possible Causes</u> — This mode is in effect only due to programming options.

MODE 16 (*Operating Mode→MODE→MD16*) — Heating Low EWT Lockout

<u>Criteria for Mode</u> — This mode is not supported for Cooling Only units.

Action Taken — None.

Termination — None.

<u>Possible Causes</u> — This mode is in effect only due to programming options.

MODE 17 (*Operating Mode→MODE→MD17*) — Boiler Active

<u>Criteria for Mode</u> — This mode is not supported for Cooling Only units.

Action Taken - None.

Termination — None.

<u>Possible Causes</u> — This mode is in effect only due to programming options.

MODE 18 (*Operating Mode→MODE→MD18*) — Ice Mode in Effect

<u>Criteria for Mode</u> — Tested when the unit is ON. This mode is active when Ice Setpoint (*Setpoints* → *COOL* → *CSP.3*) is in use. While in this mode, the Active Setpoint (*Run Status* → *VIEW* → *SETP*) will show the *CSP.3* value.

Action Taken — The unit will operate to the Ice Setpoint (CSP.3).

<u>Termination</u> — This mode will terminate when the Ice Setpoint (*CSP.3*) is no longer in use.

 $\underline{\underline{Possible\ Causes}}$ — This mode is in effect only due to programming options.

MODE 19 *Operating Mode→MODE→MD19*) — Defrost Active on Cir A

MODE 20 (*Operating Mode→MODE→MD20*) — Defrost Active on Cir B

<u>Criteria for Mode</u> — This mode is not supported for Cooling Only units.

Action Taken — None.

Termination — None.

<u>Possible Causes</u> — This mode is in effect only due to programming options.

MODE 21 (*Operating Mode→MODE→MD21*) — Low Suction Circuit A

MODE 22 (*Operating Mode→MODE→MD22*) — Low Suction Circuit B

MODE 23 (*Operating Mode→MODE→MD23*) — Low Suction Circuit C

<u>Criteria for Mode</u> — The criteria are tested when the circuit is ON. The appropriate circuit mode will be active if one of the following conditions is true:

- 1. If the circuit's Saturated Suction Temperature (SST) is more than 6° F (3.3° C) less than the freeze point and both the cooler approach (Leaving Water Temperature-SST) and superheat (Suction Gas Temperature SST) are greater than 15° F (8.3° C).
- 2. If there is more than one compressor ON in the circuit and the circuit's SST is greater than 18° F (10.0° C) below the freeze point for more than 90 seconds.
- 3. If there is more than one compressor ON in the circuit and the circuit's SST is greater than -4° F (-20.0° C) and the SST 30 seconds ago was 18° F (10.0° C) below the freeze point.
- 4. If the circuit's saturated suction temperature is greater than 6° F (3.3° C) below the freeze point for more than 3 minutes.

For a fresh water system (*Configuration* \rightarrow *SERV* \rightarrow *FLUD*=1), the freeze point is 34° F (1.1° C). For medium temperature brine systems, (*Configuration* \rightarrow *SERV* \rightarrow *FLUD*=2), the freeze point is Brine Freeze Set Point (*Configuration* \rightarrow *SERV* \rightarrow *LO-SP*).

<u>Action Taken</u> — For criterion 1, no additional stages will be added. For criteria 2, 3 and 4, one stage of capacity will be removed.

<u>Termination</u> — The mode will terminate when the circuit's Saturated Suction Temperature is greater than the freeze point minus 6° F (3.3° C) or the circuit has alarmed.

<u>Possible Causes</u> — If this condition is encountered, see Possible Causes for Alarms P.05, P.06, and P.07 on page 75.

MODE 24 (*Operating Mode→MODE→MD24*) — High DGT Circuit A

MODE 25 (*Operating Mode→MODE→MD25*) — High DGT Circuit B

MODE 26 (*Operating Mode→MODE→MD26*) — High DGT Circuit C

<u>Criteria for Mode</u> — This mode is tested for when any circuit is running. The circuit saturated condensing and suction temperatures are monitored to ensure that the compressors always operate withing their allowed "map." Operation at conditions at or outside the "map" boundaries will cause this mode to be in effect. Operation at extremely low suction pressures and high condensing temperatures will cause the mode to be generated.

<u>Action Taken</u> — The circuit will not be allowed to increase capacity and may be automatically unloaded or stopped.

<u>Termination</u> — This mode will terminate when or if the circuit refrigerant conditions return to within the compressor "map."

<u>Possible Causes</u> — This mode could be in effect due to a low fluid flow rate, overcharge of oil in a circuit, dirty condenser coils, refrigerant overcharge, or excessive brine concentration.

MODE 27 (*Operating Mode→MODE→MD27*) — High Pres Override Cir A

MODE 28 (*Operating Mode→MODE→MD28*) — High Pres Override Cir B

MODE 29 (*Operating Mode→MODE→MD29*) — High Pres Override Cir C

<u>Criteria for Mode</u> — Tested when the circuit is ON. The appropriate circuit mode will be active if the discharge pressure for the circuit, Discharge Pressure Circuit A (*Pressure* $\rightarrow PRC.A \rightarrow DP.A$), Discharge Pressure Circuit B (*Pressure* $\rightarrow PRC.B \rightarrow DP.B$), or Discharge Pressure Circuit C (*Pressure* $\rightarrow PRC.C \rightarrow DP.C$) is greater than the High Pressure Threshold (*Configuration* $\rightarrow SERV \rightarrow HP.TH$).

Action Taken — The capacity of the affected circuit will be reduced. If the unit is equipped with Minimum Load Control and has been configured for High Ambient (*Configuration* \rightarrow *UNIT* \rightarrow *HGBP*=3), the minimum load control valve will be energized. Two minutes following the capacity reduction, the circuit's saturated condensing temperature (SCT) is calculated and stored. The affected circuit will not be allowed to add capacity for at least 5 minutes following the capacity reduction. If after 5 minutes, the circuit's saturated condensing temperature is less than SCT – 3° F (1.7° C), if required, another stage of capacity will be added.

If additional steps of capacity are required, the control will look for other circuits to add capacity.

<u>Termination</u> — This mode will terminate once the circuit's saturated condensing temperature is less than SCT - 3° F (1.7° C).

<u>Possible Causes</u> — If this condition is encountered, see Possible Causes for Alarm A1.03. on page 70.

MODE 30 (*Operating Mode→MODE→MD30*) — Low Superheat Circuit A

MODE 31 (*Operating Mode→MODE→MD31*) — Low Superheat Circuit B

MODE 32 (*Operating Mode→MODE→MD32*) — Low Superheat Circuit C

<u>Criteria for Mode</u> — Tested when the circuit is ON with at least 1 compressor ON. The appropriate circuit mode will be active is the circuit's superheat is less than 5° F (2.8° C) or greater than 45° F (25° C).

<u>Action Taken</u> — No additional stages of circuit capacity will be added until the circuit's superheat is greater than 5° F (2.8° C) and less than 45° F (25° C).

The control will look for other circuits to add capacity if additional steps of capacity are required.

<u>Termination</u> — This mode will terminate once the affected circuit's superheat is greater than 5° F (2.8° C) and less than 45° F (25° C).

<u>Possible Causes</u> — If this condition is encountered, see Possible Causes for Alarms P.08, P.09, P.10, P.11, P.12 and P.13 on page 74.

Optional Heat Reclaim Module — The heat reclaim option adds a water-cooled condenser in parallel with the standard air-cooled condenser for the purpose of simultaneously producing tempered hot water while satisfying the chilled water requirement.

For chillers with the heat reclaim option, *Configuration*—*UNIT*—*RECL* should be set to YES.

This option requires the installation of an additional board (EMM-HR).

This board allows control of the components shown in Table 11. Table 38 lists EMM-HR outputs for the solenoid valves. Item numbers in Table 38 refer to Fig. 24 of this document

For more control details, refer to the unit low voltage control schematic (Fig. 25).

The heat reclaim mode can be selected by either the Heat Recovery Enable Switch or by CCN control.

SWITCH CONTROLLED — To configure Heat Reclaim for SWITCH control, the unit Operating Type Control can be configured to 0, 1 or 2 (*Operating Modes*—*SLCT*—*OPER*). The Reclaim Select configuration must be set to "Switch Control" (*Operating Modes*—*SLCT*—*RL.SE*=2). Switch input connection should be field wired to terminals 14 and 15 on TB7, cooling mode (open) or heat reclaim mode (closed). Switch status can be accessed through *Input*—*GEN.I*—*RECL*.

CCN CONTROL — To configure Heat Reclaim for CCN control, the unit Operating Type Control must be set to CCN control (*Operating mode*—*SLCT*—*OPER=2*). The Reclaim Select configuration must be set to "Yes" (*Operating Modes*—*SLCT*—*RL.SE=1*). Heat reclaim mode is selected by forcing CCN point RECL SEL (*Status Display*— *GENUNIT*—*RECL_SEL*) to "NO" for cooling mode or "YES" for Heat Reclaim mode.

The heat reclaim function is active when the heat reclaim entering water temperature is lower than the heat reclaim set point ($Setpoints \rightarrow MISC \rightarrow RSP$), default 122 F (50 C), minus half or quarter of the heat reclaim deadband, depending on the number of refrigerant circuits in reclaim mode ($Setpoints \rightarrow MISC \rightarrow RDB$). The default heat reclaim deadband is 9° F (5.0° C) and the recommended deadband range is 5 to 18° F (2.8 to 10° C).

The difference between the reclaim entering water temperature and reclaim set point will determine if one or two circuits are required to provide heat reclaim capacity. See Table 39 for details.

Heat Reclaim Active status is indicated by *MODE_14=ON* (*Operating Modes—MODE—MD14*) from the scrolling marquee display or **Mode_14=1** accessed through CCN.

The following is the changeover procedure from cooling mode to heat reclaim mode.

- 1. Verify that the circuit has run for more than 2 minutes in cooling.
- 2. Start the reclaim pump.
- 3. Verify the reclaim condenser flow switch is closed. If this remains open after one minute of condenser pump operation, the circuit remains in cooling mode and P.15 alarm will be activated.

Once water flow is established the following conditions must be true:

- saturated condensing temperature is greater than saturated suction temperature plus 18° F (10° C)
- if reclaim water entering requires the circuit to go to a heat reclaim session and the number of air cooled to reclaim changeovers is not greater than 4 per hour

• the last changeover occurred more than 7 minutes ago

When all of these conditions are true, the heat reclaim pumpdown sequence is activated. During heat reclaim pumpdown, the control will open the entering heat reclaim condenser solenoid valve and close the entering air-cooled condenser solenoid valves 3 seconds later. After one minute or when the subcooling value is above 13.2 F (-10.4 C), the heat reclaim operation is effective.

During the heat reclaim operation, if the sub-cooling value is less than 13.2 F (-10.4 C) leaving air-cooled condenser solenoids may activate for 3 seconds every 20 seconds to recover more charge. If sub-cooling is greater than 16° F (9.0° C) the entering air cooled condenser solenoids may activate for 3 seconds every 20 seconds to transfer charge back into the aircooled condenser to prevent excessive condensing temperature. The leaving heat reclaim condenser solenoid should remain closed.

Once the heat reclaim set point (RSP) is satisfied, the system will transition back to normal air-cooled mode. The air-cooled pumpdown sequence is activated. During air-cooled pumpdown, the control will open the entering air-cooled condenser solenoids and close the entering heat reclaim condenser valves 3 seconds later.

During the air-cooled operation, leaving heat reclaim condenser solenoids may activate for 3 seconds every 20 seconds to recover more charge into air-cooled operation, based on the system sub-cooling level. Leaving air-cooled condenser solenoids should remain closed.

Heat reclaim entering water temperature (*HEWT*), leaving water temperature (*HLWT*), heat reclaim pump hours (*HR.CD*), refrigerant sub-cooling (*HRS.x*) can be accessed from the scrolling marquee display through the following paths:

 $Temperatures \rightarrow UNIT \rightarrow HEWT$ $Temperature \rightarrow UNIT \rightarrow HLWT$ $Run\ Status \rightarrow RUN \rightarrow HR.CD$ $Temperatures \rightarrow Cir.A \rightarrow HRS.A$ $Temperatures \rightarrow Cir.B \rightarrow HRS.B$

To view circuit status through CCN, two points are available: Reclaim Status Circuit A and Reclaim Status Circuit B. Each will show a single-digit number as defined in Table 40.

RECLAIM CONDENSER WATER VALVE OUTPUT — This output (0 to 10 vdc) controls the heat reclaim condenser 3-way water valve position through a variable speed device. A 10 vdc signal corresponds to 100% open.

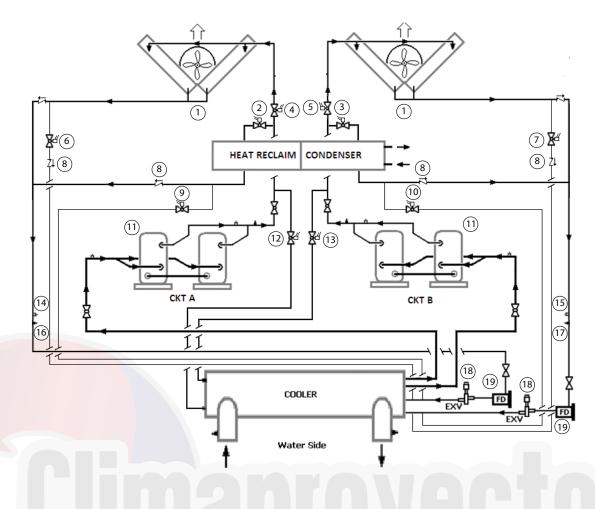
Table	38 —	Heat	Reclaim	Circuits
I abic	00	HCUL	IICCIAIIII	Oncare

OUTPUT	PUT ITEM NO. DESCRIPTION		CONNECTION	RELAY	SOLENOID	OPERATION	
OUIPUI	ITEM NO.	DESCRIPTION	CONNECTION	RELAT	TYPE	COOLING	RECLAIM
HR1.A	4	Ckt. A Ent A/C Cond. Sol.	EMM-J3-CH24	ECA-A	N/O	OPEN	CLOSED
HR2.A	6	Ckt. A Lvg A/C Cond. Sol.	EMM-J2-CH18	LCA-A	N/C	CLOSED	CYCLING
HR3.A	2	Ckt. A Ent W/C Cond. Sol.	EMM-J2-CH20	ECW-A	N/C	CLOSED	OPEN
HR4.A	9	Ckt. A Lvg W/C Cond. Sol.	EMM-J2-CH22	LCW-A	N/C	CYCLING	CLOSED
HR1.B	5	Ckt. B Ent A/C Cond. Sol.	EMM-J3-CH25	ECA-B	N/O	OPEN	CLOSED
HR2.B	7	Ckt. B Lvg A/C Cond. Sol.	EMM-J2-CH19	LCA-B	N/C	CLOSED	CYCLING
HR3.B	3	Ckt. B Ent W/C Cond. Sol.	EMM-J2-CH21	ECW-B	N/C	CLOSED	OPEN
HR4.B	10	Ckt. B Lvg W/C Cond. Sol.	EMM-J2-CH23	LCW-B	N/C	CYCLING	CLOSED

Table 39 — Heat Reclaim Staging

HEAT RECLAIM ENTERING WATER TEMPERATURE	RECLAIM SELECT	NUMBER OF CIRCUITS IN RECLAIM	NUMBER OF CIRCUITS IN RECLAIM STATUS CHANGE
	No	0	- 2
<pre>hr_ew < rsp - hr_deadb/2</pre>	Yes	_	+ 2
rsp - hr_deadb/2 < hr_ewt < rsp - hr_deadb/4	Yes	0	+ 1
rsp - hr_deadb/2 < hr_ewt < rsp - hr_deadb/4	Yes	1	Unchanged
rsp - hr_deadb/4 < hr_ewt < rsp + hr_deadb/4	Yes	-	Unchanged
rsp + hr_deadb/4 < hr_ewt < rsp + hr_deadb/2	Yes	1	Unchanged
rsp + hr_deadb/4 < hr_ewt < rsp + hr_deadb/2	Yes	2	- 1
<pre>hr_ewt > rsp + hr_deadb/2</pre>	Yes	_	- 2

Table 40 — CCN Table Status Display — RECLAIM


RECLAIM STATUS (hrstat_x)*	DESCRIPTION
0	Air cooled mode
1	Reclaim mode request
2	Reclaim pumpdown sequence
3	Reclaim operation mode
4	Air cooled mode request

^{*}x = a or b.

The 3-way valve should be installed to facilitate the cold water start-up below 59 F (15 C) and maintain a stable head pressure control during heat reclaim operation. The minimum position of the water valve should be set at 20% and maximum position should be set at 100%. When the entering water temperature is below 68 F (20 C), the water valve should remain at 20% position to allow a maximum re-circulating of the warm water between the 3-way water valve and heat reclaim condenser.

When the entering water temperature is above $104 \, F$ ($40 \, C$), the water valve will remain fully open, allowing no recirculation of the warm water. When the entering water temperature is between $68 \, F$ and $104 \, F$ ($20 \, and \, 40 \, C$), the water valve will be adjusted between 20% and 100% position in linear proportion to the value of the entering water temperature.

RECLAIM CONDENSER HEATER OPERATION — For freeze protection the heat reclaim condenser is equipped with an electric heater. The heater is energized when entering or leaving heat reclaim fluid temperature is lower than 37.4 F (3.0 C). The heater is de-energized when both temperatures are above 40.0 F (4.4 C).

LEGEND

EXV — Electronic Expansion Valve

ITEM NUMBERS

- Air condenser (coils)
- Solenoid valve: Heat reclaim mode ckt A (entering heat reclaim condenser) Solenoid valve: Heat reclaim mode ckt B (entering heat reclaim condenser)

- Solenoid valve: Cooling mode ckt A (entering air-cooled condenser)

 Solenoid valve: Cooling mode ckt B (entering air-cooled condenser)

 Solenoid valve: Charge recovery in heat reclaim mode ckt A (leaving air-cooled condenser)

 Solenoid valve: Charge recovery in heat reclaim mode ckt B (leaving air-cooled condenser)

- Solenoid valve: Charge recovery in cooling mode ckt A (leaving heat reclaim condenser) Solenoid valve: Charge recovery in cooling mode ckt B (leaving heat reclaim condenser)
- Compressor

- Hot Gas Bypass ckt A
 Hot Gas Bypass ckt B
 Pumpdown pressure transducer ckt A
- Pumpdoiwn pressure transducer ckt B
- Subcooled condenser gas temperature ckt A Subcooled condenser gas temperature ckt B Expansion Device (EXV) Filter Drier (FD)

Fig. 24 — Solenoid Valve Location in Chiller System — 30RB with Heat Reclaim

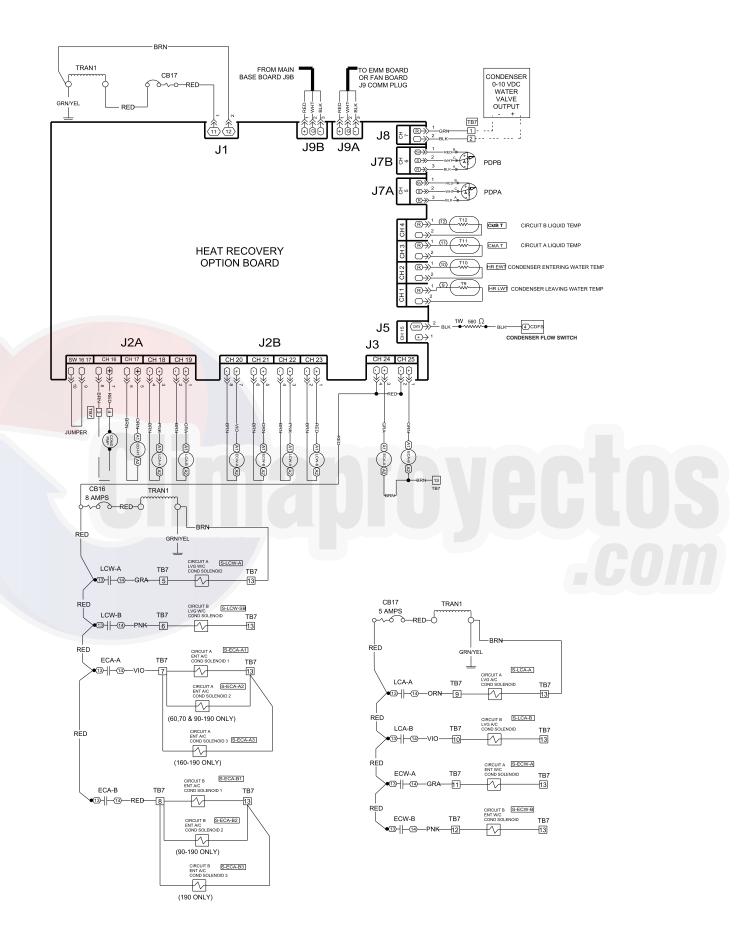


Fig. 25 — Heat Reclaim Low Voltage Control Schematic

SERVICE

Electronic Expansion Valve (EXV) — See Fig. 26 for a cutaway view of the EXV. High-pressure liquid refrigerant enters valve through the top. As refrigerant passes through the orifice, pressure drops and refrigerant changes to a 2-phase condition (liquid and vapor). The electronic expansion valve operates through an electronically controlled activation of a stepper motor. The stepper motor stays in position, unless power pulses initiate the two discrete sets of motor stator windings for rotation in either direction. The direction depends on the phase relationship of the power pulses.

The motor directly operates the spindle, which has rotating movements that are transformed into linear motion by the transmission in the cage assembly. The valve cone is a V-port type which includes a positive shut-off when closed.

There are two different EXVs. For circuits with 1 or 2 compressors, the total number of steps is 2785. For circuits with 3 or 4 compressors, the total number of steps is 3690. The EXV motor moves at 150 steps per second. Commanding the valve to either 0% or 100% will add extra 160 steps to the move, to ensure the value is open or closed completely.

The EXV board controls the valve. Each circuit has a thermistor located in a well in the suction manifold before the compressor. Suction pressure as measured by the suction pressure transducer is converted to a saturated suction temperature. The thermistor measures the temperature of the superheated gas entering the compressor and the pressure transducer determines the saturated temperature of suction gas. The difference between the temperature of the superheated gas and the saturated suction temperature is the superheat. The EXV board controls the position of the electronic expansion valve stepper motor to maintain superheat set point.

The MBB controls the superheat leaving cooler to approximately 9.0° F (5.0° C). Because EXV status is communicated to the main base board (MBB) and is controlled by the EXV boards, it is possible to track the valve position. The unit is then protected against loss of charge and a faulty valve. During initial start-up, the EXV is fully closed. After initialization period, valve position is tracked by the EXV board by constantly monitoring the amount of valve movement.

The EXV is also used to limit cooler saturated suction temperature to 50 F (10 C). This makes it possible for the chiller to start at higher cooler fluid temperatures without overloading the compressor. This is commonly referred to as MOP (maximum operating pressure).

If it appears that the EXV module is not properly controlling circuit operation to maintain correct superheat, there are a number of checks that can be made using test functions and initialization features built into the microprocessor control. See the EXV Troubleshooting Procedure section to test EXVs.

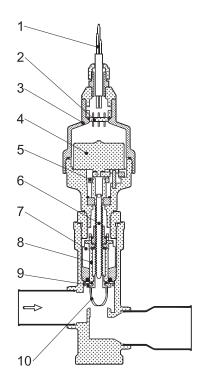
EXV TROUBLESHOOTING PROCEDURE — Follow the steps below to diagnose and correct EXV problems. Check EXV motor operation first. Switch the Enable/Off/Remote (EOR) Contact switch to the Off position. Press ESCAPE on the scrolling marquee until the highest operating level is displayed. Use the arrow keys to select the Service Test mode and press ENTER . The display will be TEST. Use the arrow keys until display shows QUIC. Press ENTER (password entry may be required) and use to change OFF to ON.

The Quick Test sub-mode is now enabled. Move the arrow down to the appropriate circuit EXV, Circuit A EXV % Open (Service Test Mode \rightarrow QUIC \rightarrow EXV.A), Circuit B EXV % Open (Service Test Mode \rightarrow QUIC \rightarrow EXV.B), or Circuit C EXV % Open (Service Test Mode \rightarrow QUIC \rightarrow EXV.C), and press ENTER. The current value of 0 will be displayed.

A CAUTION

Do not remove EXV cables from the EXV board with the power applied to the board. Damage to the board may occur.

Press ENTER and the value will be flashing. Using the increase the EXV position to select 100% valve position (hold for quick movement) and press ENTER. The actuator should be felt moving through the EXV. Press ENTER again twice if necessary to confirm this has occurred. This will attempt to force the EXV to 100% again. To close the valve, press ENTER, select 0% with and press ENTER.


The actuator should knock when it reaches the bottom of its stroke. If it is believed that the valve is not working properly, continue with the following test procedure:

Check the 8-position DIP switch on the board for the proper address. Check the EXV output signals at appropriate terminals on the EXV module. Connect positive test lead to EXV-J2A terminal 5 for sizes 060-190 or EXV1-J2A terminal 5 for sizes 210-300 for Circuit A. Connect lead to EXV-J2B terminal 5 for sizes 060-190 or EXV1-J2B terminal 5 for sizes 210-300 for Circuit B. Connect lead to EXV2-J2A terminal 5 for sizes 210-300 for Circuit C. Set meter to approximately 20 vdc. Using the Service Test procedure above, move the valve output under test to 100%. DO NOT short meter leads together or pin 5 to any other pin, as board damage will occur. During the next several seconds, carefully connect the negative test lead to pins 1,2,3 and 4 in succession. Digital voltmeters will average this signal and display approximately 6 vdc. If the output remains at a constant voltage other than 6 vdc or shows 0 volts, remove the connector to the valve and recheck.

Press ENTER and select 0% to close the valve. If a problem still exists, replace the EXV board. If the reading is correct, the expansion valve and EXV wiring should be checked. Check the EXV connector and interconnecting wiring.

- Check color-coding and wire connections. Make sure they are connected to the correct terminals at the EXV board and EXV plug and that the cables are not crossed.
- 2. Check for continuity and tight connection at all pin terminals.

Check the resistance of the EXV motor windings. Remove the EXV module plug. Module plug is labeled EXV-J2A on sizes 060-190 or EXV1-J2A on sizes 210-300 for Circuit A, EXV-J2B for sizes 060-190 or EXV1-J2B for sizes 210-300 for Circuit B, or EXV2-J2A on sizes 210-300 for Circuit C. Check the resistance of the two windings between pins 1 and 3 for one winding and pins 2 and 4 for the other winding. The resistance should be 52 ohms (± 5.2 ohms). Check resistance of pins 1, 2, 3, and 4 to ground. The resistance should be infinity.

- 1. Cable
- 2. Glass Seal
- Motor Housing
 Stepper Motor
- 5. Bearing
- 6. Lead Screw
- 7. Insert
- 8. Valve Piston
- 9. Valve Seat
- 10. Valve Port

Fig. 26 — Cutaway View of the Electronic Expansion Valve

Inspecting/Opening Electronic Expansion Valves

IMPORTANT: Obtain replacement gaskets before opening EXV. Do not re-use gaskets.

To check the physical operation of an EXV, the following steps must be performed.

- Close the liquid line shut off valve of the circuit to be checked. Put the Enable/Off/Remote Contact switch in the Off position. Using the scrolling marquee, enter the Service Test mode and change Service Test→TEST→T.REQ from OFF to ON. A password may be required. Switch the EOR switch to the Enable position. Under the COMP sub-mode, enable the one of the compressors (Service Test→TEST→CP.xn) for the circuit. Let compressor run until gage on suction pressure port reads 10 psig. Press ENTER, wand ENTER to turn the compressor off. The compressor will turn off. Immediately after the compressor shuts off, close the discharge valve.
- 2. Remove any remaining refrigerant from the system low side using proper reclaiming techniques. Turn off the line voltage power supply to the compressors.
- 3. The expansion valve motor is hermetically sealed inside the top portion of the valve. See Fig. 26. Carefully unscrew the 1¹/₁₆ in. (27 mm) retaining nut securing the motor portion to the body of the valve making sure the EXV plug is still connected. The EXV operator will come out with the motor portion of the device.

Enter the appropriate EXV test step under the (Service *Test*→*QUIC*) sub-mode in the Service Test mode. Locate the desired item *Service Test* $\rightarrow QUIC \rightarrow EXV.A$, Service Test $\rightarrow QUIC \rightarrow EXV.B$, or Service Test $\rightarrow QUIC$ \rightarrow EXV.C. Press ENTER twice to make the valve position of 0% flash. Press and hold until 100% is displayed and press ENTER. Observe the operation of the lead screw. See Fig. 26. The motor should be turning, raising the operator closer to the motor. Motor actuator movement should be smooth and uniform from fully closed to fully open position. Press ENTER twice, use to select 0% and press ENTER again to check open to closed operation. If the valve is properly connected to the processor and receiving correct signals, yet does not operate as described above, the sealed motor portion of the valve should be replaced.

Installing EXV Motor

IMPORTANT: Obtain replacement gasket before opening EXV. Do not re-use gaskets.

If re-installing the motor, be sure to use a new gasket in the assembly. See Fig. 27. It is easier to install the motor assembly with the lead screw in the fully closed position. Using the steps outlined above, move the EXV position to 0. Insert the motor into the body of the EXV. Tighten the motor to the body to 36 ft-lb (50 N-m) and then tighten the valve another 30 degrees. *Moisture Liquid Indicator* — Clear flow of liquid refrigerant indicates sufficient charge in system. Bubbles in the sight glass indicate undercharged system or presence of noncondensables. Moisture in system measured in parts per million (ppm), changes color of indicator. See Table 41. Change filter drier at first sign of moisture in system.

Table 41 — Moisture Liquid Indicator

REFRIGERANT R-410A	AT 75 F (24 C) (ppm)	AT 125 F (52 C) (ppm)
Green — Dry	<20	<60
Yellow-green — Caution	20 to 165	60 to 500
Yellow — Wet	>165	>500

IMPORTANT: Unit must be in operation at least 12 hours before moisture indicator can give an accurate reading.

With unit running, indicating element must be in contact with liquid refrigerant to give true reading.

Filter Drier — Whenever moisture-liquid indicator shows presence of moisture, replace filter drier(s). There is one filter drier on each circuit. Refer to Carrier Standard Service Techniques Manual, Chapter 1, Refrigerants, for details on servicing filter driers.

Liquid Line Service Valve — This valve is located immediately ahead of filter drier, and has a $^{1}/_{4}$ -in. Schrader connection for field charging. In combination with compressor discharge service valve, each circuit can be pumped down into the high side for servicing except on units equipped with MCHX condenser coils.

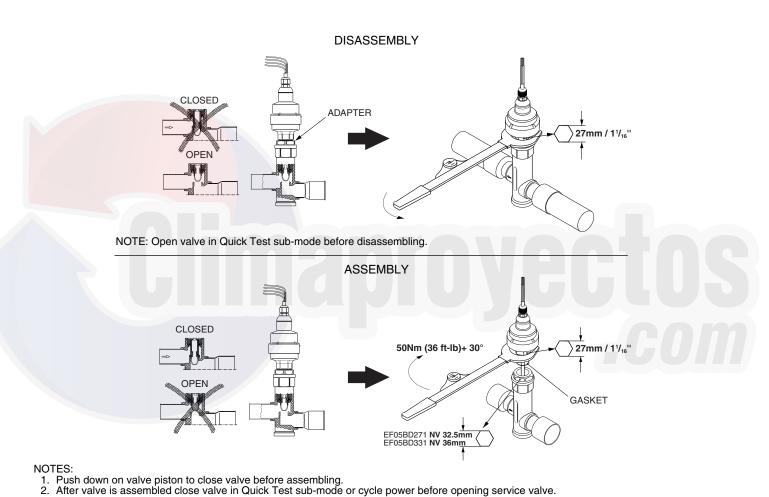


Fig. 27 — Disassembly and Assembly of EXV Motor

Cooler

FREEZE PROTECTION — Coolers can be ordered with heaters installed in the factory. If equipped, the main base board based on the outdoor-air temperature and the entering and leaving water thermistors controls the cooler heaters. The Heater Set Point is the sum of the freeze point and Cooler Heater DT Setp (*Configuration*—*SERV*—*HTR*).

If the entering or leaving water temperature is less than the Heater Set Point and the outdoor-air temperature is less than the Heater Set Point -2° F (1.1° C), then the heater will be turned on.

If the Entering or Leaving Water Temperature is less than the Brine Freeze Setpoint (*Configuration* \rightarrow *SERV* \rightarrow *LOSP*) + 1.0° F (0.5° C), then the heater will be turned on along with the pump.

Entire cooler is covered with closed-cell insulation applied over the heater. Heater plus insulation protect cooler against low ambient temperature freeze-up to -20 F (-28 C).

IMPORTANT: If unit is installed in an area where ambient temperatures fall below 32 F (0° C), it is recommended that a suitable corrosion-inhibited antifreeze solution be used in chilled water circuit.

LOW FLUID TEMPERATURE — Main base board is programmed to shut chiller down if leaving fluid temperature drops below 34 F (1.1 C) for water or below Brine Freeze Setpoint (*Configuration* → *SERV* → *LOSP*) for brine units. The unit will shut down without a pumpout. When fluid temperature rises to 6° F (3.3° C) above the leaving fluid set point, safety resets and chiller restarts. Reset is automatic as long as this is the first occurrence.

LOSS OF FLUID FLOW PROTECTION — All 30RB machines include an integral flow switch that protects the chiller against loss of cooler flow.

TUBE PLUGGING — A leaky tube can be plugged until retubing can be done. The number of tubes plugged determines how soon the cooler *must* be retubed. If several tubes require plugging, check with a local Carrier representative to find out how the number and location of tubes can affect unit capacity. Up to 10% of the tubes per refrigerant pass can be plugged. Fig. 28 shows an Elliott tube plug and a cross-sectional view of a plug in place. See Tables 42 and 43 for plug components.

⚠ CAUTION

Use extreme care when installing plugs to prevent damage to the tube sheet section between the holes.

Table 42 — Plug Component Part Numbers

COMPONENTS FOR PLUGGING	PART NUMBER
For Tubes	
Brass Pin	853103-312*
Brass Ring	853002-322*
For Holes without tubes	
Brass Pin	853103-375
Brass Ring	853002-377
Loctite	No. 675 †
Locquic	"N" †

^{*}Order directly from Elliot Tube Company, Dayton, OH or RCD. †Can be obtained locally.

Table 43 — Plug Component Dimensions

PLUG COMPONENT	SIZE		
PLOG COMPONENT	in.	mm	
Tube sheet hole diameter	0.377-0.382	9.58-9.70	
Tube OD	0.373-0.377	9.47-9.58	
Tube ID after rolling (includes expansion due to clearance.)	0.328	8.33	

NOTE: Tubes next to gasket webs must be flush with tube sheet (both ends).

For the 30RB150-390 coolers, the pass partition has a perforated distribution plate in the inlet pass to more uniformly distribute the refrigerant as it enters the first pass tubes of the cooler. The perforated distribution plate is on the tubesheet side of the pass partition. A tube plug in a first pass tube will interfere with the installation of pass partition. The tube plug must be flush with the tube sheet to prevent this interference. The pass partition is symmetrical, meaning the partition plate can be rotated 180 degrees, however, the performance of the machine will be affected if the pass partition is installed incorrectly.

RETUBING — When retubing is required, obtain service of qualified personnel experienced in boiler maintenance and repair. Most standard procedures can be followed when retubing the coolers. An 8% crush is recommended when rolling replacement tubes into the tubesheet.

The following Elliott Co. tube rolling tools are required:

- Expander Assembly
- Cage
- Mandrel
- Rolls

Place one drop of Loctite No. 609 or equivalent on top of tube prior to rolling. This material is intended to "wick" into the area of the tube that is not rolled into the tube sheet, and prevent fluid from accumulating between the tube and the tube sheet.

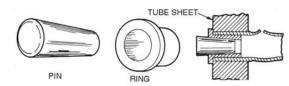


Fig. 28 — Elliott Tube Plug

TIGHTENING COOLER HEAD BOLTS (Fig. 29-33)

<u>Gasket Preparation</u> — When reassembling cooler heads, always use new gaskets. Gaskets are neoprene-based and are brushed with a light film of compressor oil. *Do not soak gasket or gasket deterioration will result*. Use new gaskets within 30 minutes to prevent deterioration. Reassemble cooler nozzle end or plain end cover of the cooler with the gaskets. Torque all cooler bolts to the following specification and sequence:

⁵/₈-in. Diameter Perimeter Bolts (Grade 5) . . . 150 to 170 ft-lb (201 to 228 N-m)

¹/₂-in. Diameter Flange Bolts (Grade 5) 70 to 90 ft-lb (94 to 121 N-m)

 $^{1}\!/_{\!2}\text{-in.}$ Diameter Center Stud (Grade 5). 70 to 90 ft-lb (94 to 121 N-m)

- Install all bolts finger tight, except for the suction flange bolts. Installing these flanges will interfere with tightening the center stud nuts.
- Bolt tightening sequence is outlined in Fig. 27-31. Follow the numbering or lettering sequence so that pressure is evenly applied to gasket.
- Apply torque in one-third steps until required torque is reached. Load *all* bolts to each one-third step before proceeding to next one-third step.
- 4. No less than one hour later, retighten all bolts to required torque values.
- After refrigerant is restored to system, check for refrigerant leaks using recommended industry practices.
- 6. Replace cooler insulation.

CHILLED WATER FLOW SWITCH — A factory-installed flow switch is installed in the cooler nozzle for all machines. This is a thermal-dispersion flow switch with no field adjustments. The switch is set for approximately 0.5 ft/sec flow. See Table 44 for unit flow rate information.

Table 44 — Unit Flow Rates

UNIT SIZE COOLER CONNECTION SIZE (in.)		MINIMUM FLOW - WATER (GPM)	MINIMUM FLOW - 40% EG (GPM)	
060-100	4	20	53	
110-300	6	44	117	
315-390	6	44 (per module)	117 (per module)	

The sensor tip houses two thermistors and a heater element. One thermistor is located in the sensor tip, closest to the flowing fluid. This thermistor is used to detect changes in the flow velocity of the liquid. The second thermistor is bonded to the cylindrical wall and is affected only by changes in the temperature of the liquid. The thermistors are positioned to be in close contact with the wall of the sensor probe and, at the same time, to be kept separated from each other within the confines of the probe.

In order to sense flow, it is necessary to heat one of the thermistors in the probe. When power is applied, the tip of the probe is heated. As the fluid starts to flow, heat will be carried away from the sensor tip. Cooling of the first thermistor is a function of how fast heat is conducted away by the flowing liquid. The difference in temperature between the two thermistors provides a measurement of fluid velocity past the sensor probe. When fluid velocity is high, more heat will be carried away from the heated thermistor and the temperature differential will

be small. As fluid velocity decreases, less heat will be taken from the heated thermistor and there will be an increase in temperature differential.

When unit flow rate is above the minimum flow rate, then the output is switched on, sending 24 vac through a 560-ohm dropping resistor. This provides 12 vac to the MBB to prove flow has been established.

For recommended maintenance, check the sensor tip for build-up every 6 months. Clean the tip with a soft cloth. If necessary, build-up (e.g., lime) can be removed with a common vinegar cleansing agent.

RTPF (Round Tube Plate Fin) Condenser Coil Maintenance and Cleaning Recommenda-

tions — Routine cleaning of coil surfaces is essential to maintain proper operation of the unit. Elimination of contamination and removal of harmful residues will greatly increase the life of the coil and extend the life of the unit. The following maintenance and cleaning procedures are recommended as part of the routine maintenance activities to extend the life of the coil

REMOVE SURFACE LOADED FIBERS — Surface loaded fibers or dirt should be removed with a vacuum cleaner. If a vacuum cleaner is not available, a soft non-metallic bristle brush may be used. In either case, the tool should be applied in the direction of the fins. Coil surfaces can be easily damaged (fin edges can be easily bent over and damage to the coating of a protected coil) if the tool is applied across the fins.

NOTE: Use of a water stream, such as a garden hose, against a surface loaded coil will drive the fibers and dirt into the coil. This will make cleaning efforts more difficult. Surface loaded fibers must be completely removed prior to using low velocity clean water rinse.

PERIODIC CLEAN WATER RINSE — A periodic clean water rinse is very beneficial for coils that are applied in coastal or industrial environments. However, it is very important that the water rinse is made with very low velocity water stream to avoid damaging the fin edges. Monthly cleaning is recommended.

ROUTINE CLEANING OF COIL SURFACES — Routine cleaning with Totaline® environmentally balanced coil cleaner is essential to extend the life of coils. This cleaner is available from Carrier Replacement parts division as part number P902-0301 for a one gallon container, and part number P902-0305 for a 5 gallon container. It is recommended that all coils, including the standard copper tube aluminum fin, precoated fin, copper fin, or e-coated coils be cleaned with the Totaline environmentally balanced coil cleaner as described below. Coil cleaning should be part of the unit's regularly scheduled maintenance procedures to ensure long life of the coil. Failure to clean the coils may result in reduced durability in the environment.

Avoid the use of:

- coil brighteners
- acid cleaning prior to painting
- high pressure washers
- poor quality water for cleaning

Totaline environmentally balanced coil cleaner is non-flammable, hypoallergenic, nonbacterial, and a USDA accepted biodegradable agent that will not harm the coil or surrounding components such as electrical wiring, painted metal surfaces, or insulation. Use of non-recommended coil cleaners is strongly discouraged since coil and unit durability could be affected.

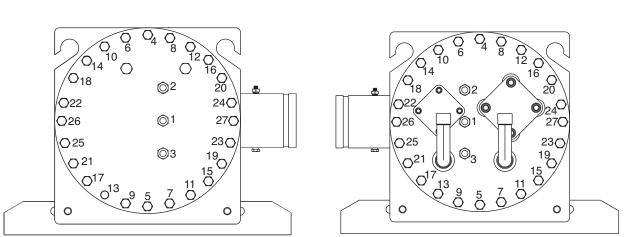


Fig. 29 — Bolt Tightening Sequence, 30RB060,070

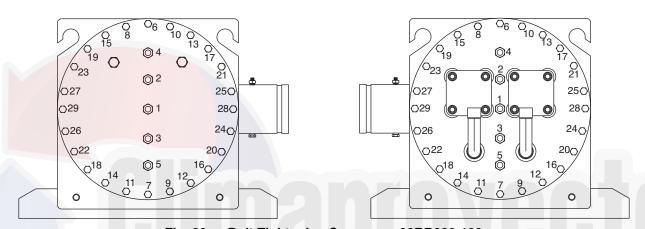


Fig. 30 — Bolt Tightening Sequence, 30RB080-100

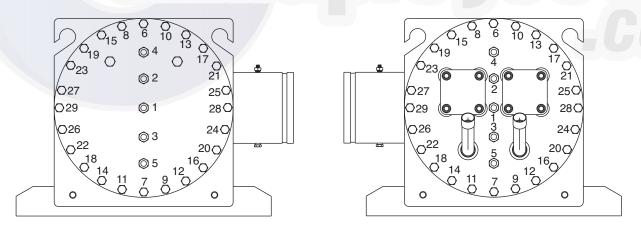
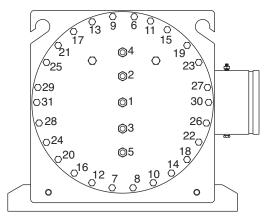



Fig. 31 — Bolt Tightening Sequence, 30RB110-130

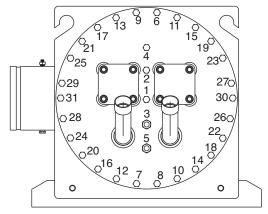
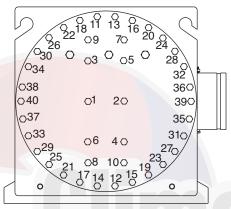



Fig. 32 — Bolt Tightening Sequence, 30RB150-190, 315A/B, 345A/B, 360A/B, 390A/B

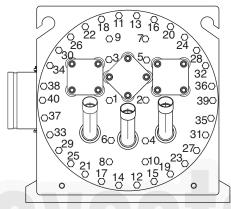


Fig. 33 — Bolt Tightening Sequence, 30RB210-300

<u>Totaline Environmentally Balanced Coil Cleaner Application Equipment</u>

- 2½ gallon garden sprayer
- water rinse with low velocity spray nozzle.

A CAUTION

Harsh chemicals, household bleach or acid or basic cleaners should not be used to clean outdoor or indoor coils of any kind. These cleaners can be very difficult to rinse out of the coil and can accelerate corrosion at the fin/tube interface where dissimilar materials are in contact. If there is dirt below the surface of the coil, use the Totaline® environmentally balanced coil cleaner as described on page 57.

⚠ CAUTION

High velocity water from a pressure washer, garden hose, or compressed air should never be used to clean a coil. The force of the water or air jet will bend the fin edges and increase airside pressure drop. Reduced unit performance or nuisance unit shutdown may occur.

<u>Totaline Environmentally Balanced Coil Cleaner Applica-</u> <u>tion Instructions</u>

- Remove any foreign objects or debris attached to the coil face or trapped within the mounting frame or brackets.
- Put on personal protective equipment including safety glasses and/or face shield, waterproof clothing and gloves. It is recommended to use full coverage clothing.
- Remove all surface loaded fibers and dirt with a vacuum cleaner as described above.

- 4. Thoroughly wet finned surfaces with clean water and a low velocity garden hose, being careful not to bend fins.
- Mix Totaline environmentally balanced coil cleaner in a 2¹/₂ gallon garden sprayer according to the instructions included with the cleaner. The optimum solution temperature is 100 F.

NOTE: Do <u>NOT USE</u> water in excess of 130 F, as the enzymatic activity will be destroyed.

- Thoroughly apply Totaline environmentally balanced coil cleaner solution to all coil surfaces including finned area, tube sheets and coil headers.
- Hold garden sprayer nozzle close to finned areas and apply cleaner with a vertical, up-and-down motion. Avoid spraying in horizontal pattern to minimize potential for fin damage.
- 8. Ensure cleaner thoroughly penetrates deep into finned areas
- Interior and exterior finned areas must be thoroughly cleaned.
- Finned surfaces should remain wet with cleaning solution for 10 minutes.
- Ensure surfaces are not allowed to dry before rinsing. Reapplying cleaner as needed to ensure 10-minute saturation is achieved.
- Thoroughly rinse all surfaces with low velocity clean water using downward rinsing motion of water spray nozzle. Protect fins from damage from the spray nozzle.

MCHX (Microchannel Heat Exchanger) Condenser Coil Maintenance and Cleaning Recommendations — Routine cleaning of coil surfaces is essential to maintain proper operation of the unit. Elimination of contamination and removal of harmful residues will greatly increase the life of the coil and extend the life of the unit. The following steps should be taken to clean MCHX condenser coils:

⚠ CAUTION

Do not apply any chemical cleaners to MCHX condenser coils. These cleaners can accelerate corrosion and damage the coil.

- Remove any foreign objects or debris attached to the coil face or trapped within the mounting frame and brackets.
- Put on personal protective equipment including safety glasses and/or face shield, waterproof clothing and gloves. It is recommended to use full coverage clothing.
- Start high pressure water sprayer and purge any soap or industrial cleaners from sprayer before cleaning condenser coils. Only clean potable water is authorized for cleaning condenser coils.
- 4. Clean condenser face by spraying the coil steady and uniformly from top to bottom while directing the spray straight toward the coil. Do not exceed 900 psig or 30 degree angle. The nozzle must be at least 12 in. from the coil face. Reduce pressure and use caution to prevent damage to air centers.

⚠ CAUTION

Excessive water pressure will fracture the braze between air centers and refrigerant tubes.

As part of normal maintenance, check the coil for leaks and corrosion. The condenser coil is connected to the refrigerant circuit with a fitting that forms a dielectric coupling. The coupling is held in place with two nuts and studs. The nuts should be tightened to 10 lb-ft (13.6 N-m).

Condenser Fans — A formed metal mount bolted to the fan deck supports each fan and motor assembly. A shroud and a wire guard provide protection from the rotating fan. The exposed end of fan motor shaft is protected from weather by grease. If fan motor must be removed for service or replacement, be sure to regrease fan shaft and reinstall fan guard. The fan motor has a step in the motor shaft. For proper performance, fan should be positioned such that it is securely seated on this step. Tighten the bolt to 12 to 15 ft-lb (16 to 20 N-m).

IMPORTANT: Check for proper fan rotation (counterclockwise viewed from above). If necessary, switch any 2 power leads to reverse fan rotation.

Refrigerant Circuit

LEAK TESTING — Units are shipped with complete operating charge of refrigerant R-410A (see Physical Data tables supplied in the 30RB Installation Instructions) and should be under sufficient pressure to conduct a leak test. If there is no pressure in the system, introduce enough nitrogen to search for the leak. Repair the leak using good refrigeration practices. After leaks are repaired, system must be evacuated and dehydrated.

REFRIGERANT CHARGE — Refer to Physical Data tables supplied in the 30RB Installation Instructions). Immediately ahead of filter drier in each circuit is a factory-installed liquid

line service valve. Each filter drier has a ¹/₄-in. Schrader connection for charging liquid refrigerant.

<u>Charging with Unit Off and Evacuated</u> — Close liquid line service valve before charging. Weigh in charge shown on unit nameplate. Open liquid line service valve; start unit and allow it to run several minutes fully loaded. Check for a clear sight glass. Be sure clear condition is liquid and not vapor.

Charging with Unit Running — If charge is to be added while unit is operating, all condenser fans and compressors must be operating. It may be necessary to block condenser coils at low ambient temperatures to raise condensing pressure to approximately 450 psig (3102 kPa) to turn all condenser fans on. Do not totally block a coil to do this. Partially block all coils in uniform pattern. Charge each circuit until sight glass shows clear liquid, and has a liquid line temperature of 103 F (39 C). If unit has the HEVCF option, run unit in Service Test with all compressors on. Fans will adjust high side pressure to the correct value, 125 F SCT (saturated condensing temperature), 450 psig.

IMPORTANT: When adjusting refrigerant charge, circulate fluid through cooler continuously to prevent freezing and possible damage to the cooler. Do not overcharge, and never charge liquid into the low-pressure side of system.

Safety Devices — Chillers contain many safety devices and protection logic built into electronic control. Following is a brief summary of major safeties.

COMPRESSOR PROTECTION

<u>Circuit Breaker</u> — Each compressor is equipped with one molded case circuit breaker to provide short circuit protection. Do not bypass or increase size of a breaker to correct problems. Determine cause for trouble and correct before resetting breaker. Circuit breaker current rating is listed on individual circuit breakers

A high-pressure switch with a trip pressure of 641 psig (4419 kPa) is mounted on the discharge line of each circuit. Switch is wired in series with the SPM modules of all compressors in the circuit. If switch opens, the SPM opens all compressor contactors in the circuit and all compressors are locked off. See the table below for high pressure switch protection.

DEVICE	CUT-OUT	CUT-IN	
High Pressure	641 ± 10 psi	493 ± 29 psi	
Switch	(4420 ± 70 kPa)	(3400 ± 200 kPa)	

CRANKCASE HEATERS — Each compressor has a 56-w crankcase heater to prevent absorption of liquid refrigerant by oil in crankcase when compressor is not running. Heater power source is control power transformer.

IMPORTANT: Never open any switch or disconnect that deenergizes crankcase heaters unless unit is being serviced or is to be shut down for a prolonged period. After a prolonged shutdown or service, energize crankcase heaters for 24 hours before starting unit.

Relief Devices — Fusible plugs are located in each circuit to protect against damage from excessive pressures.

HIGH-SIDE PROTECTION — One device is located between condenser and filter drier; a second is on filter drier.

These are both designed to relieve pressure on a temperature rise to approximately 210 F (99 C).

LOW-SIDE PROTECTION — A device is located on suction line and is designed to relieve pressure on a temperature rise to approximately 170 F (77 C).

Some local building codes require that relieved gases be removed. This connection will allow conformance to this requirement.

Compressors

⚠ WARNING

Do not supply power to unit with compressor cover removed. Failure to follow this warning can cause a fire resulting in personal injury or death.

⚠ WARNING

Exercise extreme caution when reading compressor currents when high-voltage power is on. Correct any of the problems described below before installing and running a replacement compressor. Wear safety glasses and gloves when handling refrigerants. Failure to follow this warning can cause a fire, resulting personal injury or death.

⚠ CAUTION

Do not manually operate contactors. Serious damage to the machine may result.

COMPRESSOR REPLACEMENT — To change out a faulty compressor, refer to the compressor replacement procedure included with the new compressor.

Compressor oil equalization line fittings use Roto-lok fittings. If a leak is detected at these fittings, tighten fitting to 110 lb-ft (149 N-m). If leak persists, open system and inspect gasket surface for foreign material or damage. If debris is found, clean the surface and install a new gasket. If the gasket surface is damaged, replace the compressor. Do not reuse gaskets.

OIL CHARGE — All units are factory charged with polyol ester (POE) oil to $^{7}/_{8}$ sight glass. Acceptable oil level for each compressor is $^{3}/_{4}$ to $^{7}/_{8}$ full in the sight glass. Refer to installation instructions for oil quantity.

⚠ CAUTION

The compressor in a Puron® system uses a polyol ester (POE) oil. This oil is extremely hygroscopic, meaning it absorbs water readily. POE oils can absorb 15 times as much water as other oils designed for HCFC and CFC refrigerants. Take all necessary precautions to avoid exposure of the oil to the atmosphere.

When additional oil or a complete charge is required it must meet the following specifications:

•	Manufacturer	ICI Emkarate RL 32H
•	Oil Type	Inhibited polyol ester-based
	71	synthetic compressor lubricant.

Do not reuse drained oil or any oil that has been exposed to the atmosphere.

SYSTEM BURNOUT CLEANUP PROCEDURE — Some compressor electrical failures can cause the motor to burn. When this occurs, byproducts such as sludge, carbon, and acids contaminate the system. There are 2 classifications of motor burnouts, mild and severe. Test the oil for acidity using a POE oil acid test kit to determine the severity of the burnout.

In a mild burnout, there is little or no detectable odor. Compressor oil is clear or slightly discolored. An acid test of the oil will be negative. This type of failure is treated the same as a mechanical failure. The liquid line filter drier or core should be replaced.

In a severe burnout, there is a strong, pungent, rotten egg odor. Compressor oil is very dark. Evidence of burning may be present in the tubing connected to the compressor. An acid test of the oil will be positive. The following steps should be taken before restarting any compressors in the circuit.

- Isolate compressors and recover refrigerant from compressor section.
- 2. Remove oil from all compressors in the circuit. An oil drain fitting is provided on each compressor. Pressurize the low side of the compressor circuit with nitrogen. Less than 10 psig (68.9 kPa) should be adequate. This will help in the removal of the oil from the compressor sump. Dispose of contaminated oil as per local codes and regulations.
- 3. Replace failed compressor as outlined under compressor replacement procedure.
- 4. Recharge the circuit with fresh oil. The circuit oil charge information is supplied in the 30RB Installation Instructions. Oil level should be approximately ⁷/₈ sight glass.
- 5. Install activated carbon (burnout) filter drier/core.
- 6. Leak check, evacuate and recharge refrigerant circuit.
- 7. Operate compressors. Check filter drier pressure drop periodically. Replace cores if pressure drop exceeds 4 psig (27.6 kPa).

Perform additional acid test after 24 hours of operation. Change liquid line filter drier/core if necessary. Replace with standard filter drier/core once circuit is clean. Use the Carrier Standard Service Techniques Manual as a reference source.

MAINTENANCE

Recommended Maintenance Schedule — The

following are only recommended guidelines. Jobsite conditions may dictate that maintenance schedule is performed more often than recommended.

Routine:

For machines with e-coat condenser coils:

 Periodic clean water rinse, especially in coastal and industrial applications.

Every month:

- Check condenser coils for debris, clean as necessary following recommended guidelines.
- Check moisture indicating sight glass for possible refrigerant loss and presence of moisture.

Every 3 months (for all machines):

- Check refrigerant charge.
- Check all refrigerant joints and valves for refrigerant leaks, repair as necessary.
- Check chilled water flow switch operation.
- Check condenser coils for debris, clean as necessary following recommended guidelines.
- Check sight glass moisture indicator for moisture.
- Check all condenser fans for proper operation.
- Check compressor oil level.
- Check crankcase heater operation.
- Inspect pump seal, if equipped with a hydronic pump package.

Every 12 months (for all machines):

- Check all electrical connections, tighten as necessary.
- Inspect all contactors and relays, replace as necessary.
- Check accuracy of thermistors, replace if greater than ±2° F (1.2° C) variance from calibrated thermometer.
- Check accuracy of transducers, replace if greater than ±5 psi (34.47 kPa) variance.
- Check to be sure that the proper concentration of antifreeze is present in the chilled water loop, if applicable.
- Verify that the chilled water loop is properly treated.

- Check refrigerant filter driers for excessive pressure drop, replace as necessary.
- Check chilled water strainers, clean as necessary.
- Check cooler heater operation, if equipped.
- Check pump heater operation, if equipped.
- Check condition of condenser fan blades and that they are securely fastened to the motor shaft.
- Perform Service Test to confirm operation of all components.

Check for excessive cooler approach (Leaving Chilled Water Temperature – Saturated Suction Temperature) which may indicate fouling. Clean cooler vessel if necessary.

TROUBLESHOOTING

See Table 45 for an abbreviated list of symptoms, possible causes and possible remedies.

Alarms and Alerts — The integral control system constantly monitors the unit and generates warnings when abnormal or fault conditions occur. Alarms may cause either a circuit (Alert) or the whole machine (Alarm) to shutdown. Alarms and Alerts are assigned codes as described in Fig. 34. The alarm/alert indicator LED on the scrolling marquee or NavigatorTM module is illuminated when any alarm or alert condition is present. If an Alert is active, the Alarm Indicator LED will blink. If an Alarm is active, the Alarm Indicator LED will

remain on. Currently active Alerts and Alarms can be found in *Alarms* \rightarrow *ALRM* \rightarrow *ALM1* to *ALM5*.

The controller generates two types of alarms. Automatic reset alarms will reset without any intervention if the condition that caused the alarm corrects itself. Manual reset alarms require the service technician to check for the alarm cause and reset the alarm. The following method must be followed to reset manual alarms:

Before resetting any alarm, first determine the cause of the alarm and correct it. Enter the Alarms mode indicated by the LED on the side of the scrolling marquee display. Press ENTER and sub-mode *Alarm*—**R.ALM* (Reset All Current Alarms) is displayed. Press ENTER. The control will prompt the user for a password, by displaying PASS and WORD. Press ENTER to display 1111. Press ENTER for each character. The default password is 0111. Use the arrow keys to change each individual character. Use the up or down arrow keys to toggle the display to **YES** and press ENTER. The alarms will be reset. Indicator light will be turned off when switched correctly. Do not reset the chiller at random without first investigating and correcting the cause(s) of the failure.

Each alarm is described by a three or four-digit code. The first one or two digits indicate the alarm source and are listed below. The last two digits pinpoint the problem. See Tables 46 and 47.

Table 45 — Troubleshooting

SYMPTOM	POSSIBLE CAUSE	POSSIBLE REMEDY		
Unit Does Not Run	Check for power to unit	Check overcurrent protection device. Check non-fused disconnect (if equipped). Restore power to unit.		
	Low refrigerant charge	Check for leak and add refrigerant.		
	Wrong or incorrect unit configuration	Check unit configuration.		
	Active alarm	Check Alarm status. See separate Alarm and follow troubleshooting instructions.		
	Active operating mode	Check for Operating Modes. See Operating Modes and follow trouble- shooting instructions. Check capacity control overrides.		
Unit Operates too Long or	Low refrigerant charge	Check for leak and add refrigerant.		
Continuously	Compressor or control contacts welded	Replace contactor or relay.		
	Air in chilled water loop	Purge water loop.		
	Non-condensables in refrigerant circuit.	Remove refrigerant and recharge.		
	Inoperative EXV	Check EXV, clean or replace. Check EXV cable, replace if necessary. Check EXV board for output signal.		
Circuit Does Not Run	Active alarm	Check Alarm status. See separate Alarm and follow troubleshooting instructions.		
	Active operating mode	Check for Operating Modes. See Operating Modes and follow trouble-shooting instructions.		
Circuit Does Not Load	Active alarm	Check Alarm status. See separate Alarm and follow troubleshooting instructions.		
	Active operating mode	Check for Operating Modes. See Operating Modes and follow trouble- shooting instructions.		
	Low saturated suction temperature	See Operating Modes 21, 22 and 23.		
	High circuit suction superheat	The circuit capacity is not allowed increase if circuit superheat is greater than 36 F (20 C). See Alarms P.08, P.09 and P.10 for potential causes.		
	Low suction superheat	The circuit capacity is not allowed to increase if the circuit superheat is less than 5 F (2.8 C). See Alarms P.11, P.12 and P.13 for potential causes.		
Compressor Does Not Run	Active alarm	Check Alarm status. See separate Alarm and follow troubleshooting instructions.		
	Active operating mode	Check for Operating Modes. See Operating Modes and follow trouble- shooting instructions.		
	Inoperative compressor contactor	Check control wiring. Check scroll protection module. Check contactor operation, replace if necessary.		
Chilled Water Pump is ON, but the Machine is OFF	Cooler freeze protection	Chilled water loop temperature too low. Check cooler heater.		

Table 46 — Alarm Codes

PREFIX CODE	SUFFIX CODE	DESCRIPTION	REASON FOR ALARM	ACTION TAKEN BY CONTROL	RESET TYPE	PROBABLE CAUSE
	.01	Compressor nn Motor Temperature Too High	Compressor Motor Sensor PTC resistance is greater than $4.5k\ \Omega$.	Circuit shut down or not allowed to start	Manual	Compressor failure, wiring error, operation outside of limits, improper refrigerant charge
A 1	.02	Compressor nn Crankcase Heater Failure	Crankcase heater current not detected when required or detected when not required.	Compressor shut down or not allowed to start	Manual	Wiring error, failed crankcase heater, failed SPM.
A2 A3 A4 B1 B2 B3 B4 C1 C2	.03	Compressor nn High Pressure Switch	High Pressure Switch open.	Circuit shut down or not allowed to start	Manual	Wiring error, closed/ restricted discharge valve, improper refrigerant charge, dirty condenser coils, failed outdoor fan motor, discharge pressure transducer inaccuracy
C3 C4	.04	Compressor nn Motor Sensor PTC Out of Range	Compressor Motor Sensor PTC resistance is less than 50 Ω or greater than 17k Ω .	Circuit shut down or not allowed to start	Manual	Wiring error, operation outside of limits, compressor failure, improper refrigerant charge
	.05	Compressor nn Power Reset	24-VAC power lost to SPM board.	Compressor shut down or not allowed to start	Automatic	Low voltage from main power supply.
	.06	Compressor nn Low Control Voltage Alert	24-VAC power to SPM board too low.	Compressor shut down or not allowed to start	Automatic	Low voltage from main power supply.

LEGEND

EMM — Energy Management Module
EWT — Entering Water Temperature
EXV — Electronic Expansion Valve
HR — Heat Reclaim
LWT — Leaving Water Temperature
MOP — Maximum Operating Pressure

OAT — PTC — SCT — SPM — SST — Outdoor Air Temperature Positive Temperature Coefficient Saturated Condensing Temperature Scroll Protection Module Saturated Suction Temperature

Table 46 — Alarm Codes (cont)

PREFIX CODE	SUFFIX CODE	DESCRIPTION	REASON FOR ALARM	ACTION TAKEN BY CONTROL	RESET TYPE	PROBABLE CAUSE
	.A1	Loss of Communication with Compressor Board A1				
	.A2	Loss of Communication with Compressor Board A2				
	.A3	Loss of Communication with Compressor Board A3				
	.A4	Loss of Communication with Compressor Board A4				
	.B1	Loss of Communication with Compressor Board B1				
	.B2	Loss of Communication with Compressor Board B2	No communication with	Affected com- pressor is	Automatic	Wrong SPM address, wrong unit configuration
	.В3	Loss of Communication with Compressor Board B3		shut down	Automatic	wiring error, power loss to SPM.
	.B4	Loss of Communication with Compressor Board B4				
	.C1	Loss of Communication with Compressor Board C1				
	.C2	Loss of Communication with Compressor Board C2				
	.C3	Loss of Communication with Compressor Board C3				
	.C4	Loss of Communication with Compressor Board C4				
	.E1	Loss of Communication with EXV Board Number 1	No communication with EXV1	Circuit A & B shut down or not allowed to start	Automatic	Wrong module address, wrong unit configuration
	.E2	Loss of Communication with EXV Board Number 2	No communication with EXV2	Circuit C shut down or not allowed to start	Automatic	wiring error, power loss t module
Co	.F1	Loss of Communication with Fan Board Number 1	No communication with Fan Board 1	Circuit A & B shut down or not allowed to start (060-150, 210-250) Circuit A shut down or not allowed to start (160-190, 275-300)	VE	Wrong module address, wrong unit configuration
	.F2	Loss of Communication with Fan Board Number 2	No communication with Fan Board 2	Circuit B shut down or not allowed to start (160-190, 275-300)	Automatic	wiring error, power loss t module
	.F3	Loss of Communication with Fan Board Number 3	No communication with Fan Board 3	Circuit C shut down or not allowed to start (210-300)		
	.01	Loss of Communication with Free Cooling Board	No communication with Free Cooling Board	Maria	A	O f
	.02	Loss of Communication with Electrical Heaters Board	No communication with Electrical Heaters Board	None	Automatic	Configuration error.
	.03	Loss of Communication with Energy Management Board	No communication with Energy Management Board	Disable or not allow EMM Functions (3-Step and 4-20 mA Demand Limit, 4-20 mA and Space Temperature Reset, Occu- pancy Override, and Ice Build)	Automatic	Wrong module address, wrong unit configuration wiring error, power loss t module
	.04	Loss of Communication with Heat Reclaim Board	No communication with Heat Reclaim Board	Unit shall return to the standard air cooled mode	Automatic	Wrong module address wrong unit configuration wiring error, power loss to module

LEGEND

EMM — Energy Management Module
EWT — Entering Water Temperature
EXV — Electronic Expansion Valve
HR — Heat Reclaim
LWT — Leaving Water Temperature
MOP — Maximum Operating Pressure

Table 46 — Alarm Codes (cont)

PREFIX CODE	SUFFIX CODE	DESCRIPTION	REASON FOR ALARM	ACTION TAKEN BY CONTROL	RESET TYPE	PROBABLE CAUSE	
	.01	Circuit A Welded Contactor Failure	Controls determine com- pressor is still running when circuit should be off	EXV, fan control, and pump oper- ate as normal to save compressor until high pres- sure, freeze, or flow failure condi- tions occur	Manual	One or more circuit compressor contactors welded closed.	
Ct	.02	Circuit B Welded Contactor Failure	Controls determine com- pressor is still running when circuit should be off	EXV, fan control, and pump oper- ate as normal to save compressor until high pres- sure, freeze, or flow failure condi- tions occur	Manual	One or more circuit compressor contactors welded closed.	
	.03	Circuit C Welded Contactor Failure	Controls determine compressor is still running when circuit should be off	EXV, fan control, and pump oper- ate as normal to save compressor until high pres- sure, freeze, or flow failure condi- tions occur	Manual	One or more circuit compressor contactors welded closed.	
FC	.n0	Initial Factory Configuration Required	No configuration	Unit not allowed to start	Automatic	Configuration error. Password may default to 0113.	
	.nn	Illegal Configuration	Wrong or incompatible configuration data	Unit not allowed to start	Automatic	Configuration error.	
МС	.nn	Master Chiller Configuration Error	Wrong or incompatible configuration data	Unit not allowed to start in Master- Slave Control	Automatic	Configuration error. Refer to Table 49.	
	.01	Water Exchanger Freeze Protection	Entering or Leaving Thermistor sensed a temperature at or below freeze point.	Unit shut down or not allowed to start. Chilled Water Pump will be started	Automatic, first occurrence in 24 hours, Manual, if multiple alarms within 24 hours	Faulty thermistor, faulty wiring, low water flow rate, low loop volume, or freeze conditions.	
	.05	Circuit A Low Suction Temperature	Low Saturated Suction Temperatures sensed for a period of time.	Low Saturated Suction		Automatic, first occurrence in 24 hours,	Faulty transducer, faulty wiring, low water flow
	.06	Circuit B Low Suction Temperature		Circuit shut down	Manual, if multiple alarms within 24 hours	rate, low loop volume, fouled cooler, or freeze conditions.	
	.07	Circuit C Low Suction Temperature					
	.08	Circuit A High Superheat	EXV>98%, Suction			Faulty transducer, faulty thermistor, faulty wiring,	
Р	.09	Circuit B High Superheat	Superheat >54 F (30.0 C) and SST <mop for="" more<br="">than 5 minutes</mop>	Circuit shut down	Manual	faulty EXV, low refriger- ant charge, plugged or	
	.10	Circuit C High Superheat	than 5 minutes			restricted liquid line.	
	.11	Circuit A Low Superheat	EXV ≤5% and Suction Superheat is less than		Automatic, first occurrence in 24 hours.	Faulty transducer, faulty	
	.12	Circuit B Low Superheat	the superheat setting by at least 5 F (2.8 C) or SST>Maximum Operating Pressure for more than 5 minutes	Circuit shut down	24 nours, Manual, if multiple alarms within 24 hours	thermistor, faulty wiring, faulty EXV, or incorrect configuration.	
	.13	Circuit C Low Superheat				Laura Martin Et (
	.14	Cooler Interlock Failure	Cooler Pump Interlock circuit opens (consists of chilled water flow system and chilled water pump interlock)	Unit shut down or not allowed to start	Automatic if stage=0, Manual if stage>0.	Low Water Flow, faulty wiring or contacts, faulty water flow switch, or chilled water pump problem. Remote lockout if unit is equipped with an EMM.	

LEGEND

EMM — Energy Management Module
EWT — Entering Water Temperature
EXV — Electronic Expansion Valve
HR — Heat Reclaim
LWT — Leaving Water Temperature
MOP — Maximum Operating Pressure

Table 46 — Alarm Codes (cont)

PREFIX CODE	SUFFIX CODE	DESCRIPTION	REASON FOR ALARM	ACTION TAKEN BY CONTROL	RESET TYPE	PROBABLE CAUSE
	.15	Condenser Flow Switch Failure		None	Manual	Configuration error.
	.16	Compressor A1 Not Started or Pressure not Established				
	.17	Compressor A2 Not Started or Pressure not Established				
	.18	Compressor A3 Not Started or Pressure not Established				
	.19	Compressor A4 Not Started or Pressure not Established	Compressor differential (Discharge-Suction) did not increase by 10 psig (69 kPa) in 2 minutes			
	.20	Compressor B1 Not Started or Pressure not Established				No power to the compressor, faulty compres-
	.21	Compressor B2 Not Started or Pressure not Established		Circuit shut down	Manual	sor contactor, low control voltage, faulty discharge
	.22	Compressor B3 Not Started or Pressure not Established		On our or at down	Marida	or suction pressure transducers, wiring error, improper electrical
	.23	Compressor B4 Not Started or Pressure not Established				phasing.
	.24	Compressor C1 Not Started or Pressure not Established				
	.25	Compressor C2 Not Started or Pressure not Established				
	.26	Compressor C3 Not Started or Pressure not Established				
	.27	Compressor C4 Not Started or Pressure not Established				
	.28	Electrical Box Thermostat Failure	Improper phasing detected by the reverse rotation board	Unit not allowed to start	Automatic	Check power phasing, improper wiring, or faulty detection board.
P	.29	Loss of Communication with System Manager	Loss of communication with an external control device for more than 2 minutes	Unit changes to stand alone operation	Automatic	Faulty communication wiring, no power supply to the external controller.
	.30	Master/Slave Communication Failure	Communication between the master and slave machines has been lost.	Units operate as stand alone machines	Automatic	Faulty communication wiring, no power or control power to the main base board to either module.
	.31	Unit is in Emergency Stop	Emergency Stop command has been received.	Unit shuts down or not allowed to start.	Automatic	Carrier Comfort Net- work® Emergency Stop Command received.
	.32	Cooler Pump 1 Fault	Pump Interlock status does not match pump	Unit shuts down. If available, another pump will start.	Manual	Faulty contacts, wiring error, or low control voltage.
	.33	Cooler Pump 2 Fault	status.			
	.34	Circuit A Reclaim Operation Failure	Circuit A Reclaim Operation Failure	Reclaim operation	The affected circuit shall	Manual
	.35	Circuit B Reclaim Operation Failure	Circuit B Reclaim Operation Failure	failure due to high SCT	return to air cooled mode	Manual
	.37	Circuit A Repeated High Discharge Gas Overrides	Multiple capacity			Condenser air recircula-
	.38	Circuit B Repeated High Discharge Gas Overrides	overrides due to high saturated discharge	Circuit shut down	Automatic	tion, dirty or plugged con denser coils, inaccurate discharge transducer,
	.39	Circuit C Repeated High Discharge Gas Overrides	temperatures			faulty condenser fan,
	.40	Circuit A Repeated Low Suction Temperature Overrides				Low water flow, low loop
	.41	Circuit B Repeated Low Suction Temperature Overrides	Multiple capacity over- rides due to low saturated suction temperatures	Circuit shut down	Manual	volume, fouled cooler, low refrigerant charge,
	.42	Circuit C Repeated Low Suction Temperature Overrides	suction temperatures			unit not configured for brine with glycol in cooler
	.97	Water Exchanger Temperature Sensors Swapped	Control detects EWT below LWT for 1 minute	Unit shuts down	Manual	Wiring error. EWT and LWT sensors swapped.

LEGEND

EMM — Energy Management Module
EWT — Entering Water Temperature
EXV — Electronic Expansion Valve
HR — Heat Reclaim
LWT — Leaving Water Temperature
MOP — Maximum Operating Pressure

Table 46 — Alarm Codes (cont)

PREFIX CODE	SUFFIX CODE	DESCRIPTION	REASON FOR ALARM	ACTION TAKEN BY CONTROL	RESET TYPE	PROBABLE CAUSE
	.01	Circuit A Discharge Transducer				
	.02	Circuit B Discharge Transducer				Faulty transducer, wiring
	.03	Circuit C Discharge Transducer		Circuit shut down or not allowed to	Automatic	error, failed Main Base Board or Fan Board 3.
	.04	Circuit A Suction Transducer		start.	Automatic	Compressor circuit
Pr	.05	Circuit B Suction Transducer	Measured voltage is			breaker tripped.
	.06	Circuit C Suction Transducer	0 vdc			
	.07	Circuit A Reclaim Pumpdown Pressure Transducer		The affected cir- cuit shall return to	Automatic	Faulty transducer, wiring error, failed EMM HR
	.08	Circuit B Reclaim Pumpdown Pressure Transducer		air cooled mode	Automatic	board.
Sr	.nn	Service Maintenance Alert	Field programmed elapsed time has expired for maintenance item	None	Manual	Maintenance required (see Table 50).
	.01	Water Exchanger Entering Fluid Thermistor Failure	Temperature measured by the controller is less than -40 F (-40 C) or greater than 240 F (115.6 C)	Unit will be shut	Automotic	Faulty thermistor, wiring
	.02	Water Exchanger Leaving Fluid Thermistor Failure		down or not allowed to start.	Automatic	error, failed Main Base Board.
	.03	Circuit A Defrost Thermistor Failure		None	Automatic	Configuration orror
	.04	Circuit B Defrost Thermistor Failure		None	Automatic	Configuration error.
	.08	Reclaim Condenser Entering Thermistor		Unit shall return to the standard air cooled mode.	Automatic	Faulty thermistor, wiring error, failed EMM HR
	.09	Reclaim Condenser Leaving Thermistor		None		board.
	.10	OAT Thermistor Failure		Unit is shut down or not allowed to start. Cooler/ Pump heaters are energized	Automatic	Faulty thermistor, wiring error, failed Main Base Board.
th	.11	Master/Slave Common Fluid Thermistor	ani	Dual Chiller deac- tivated. Master and Slave machines oper- ate in stand alone mode		
	.12	Circuit A Suction Gas Thermistor		Circuit shut down		
	.13	Circuit B Suction Gas Thermistor		Circuit shut down	Automatic	Faulty thermistor, wiring error, failed Main Base Board or EXV Board
	.14	Circuit C Suction Gas Thermistor	Temperature measured by the controller is less	Circuit shut down		Board of EXV Board
	.18	Circuit A Condenser Subcooling Liquid Thermistor	than -40 F (-40 C) or greater than 240 F	Unit shall return to the standard air		Faulty thermistor, wiring
	.19	Circuit B Condenser Subcooling Liquid Thermistor	(115.6 C)	cooled mode.	Automatic	error, failed EMM HR board.
	.21	Space Temperature Sensor Failure		Temperature Reset based on Space Tempera- ture disabled		Faulty thermistor, wiring error, failed Main Base Board.
V0	хх	Circuit A Variable Speed Fan Motor Failure	See Table 47 — Variable	Alant No 1'-		Coo Toble 47
V1	хх	Circuit B Variable Speed Fan Motor Failure	Speed Fan Motor Alarm Details on page 68	Alert—No action Alarm—Circuit is stopped		See Table 47 — Variable Speed Fan Motor Alarm Details on page 68.
V2	xx	Circuit C Variable Speed Fan Motor Failure	Danfoss drive only.	5.5000		Details on page 66.

LEGEND

EMM — Energy Management Module
EWT — Entering Water Temperature
EXV — Electronic Expansion Valve
HR — Heat Reclaim
LWT — Leaving Water Temperature
MOP — Maximum Operating Pressure

Table 47 — Variable Speed Fan Motor Alarm Details, Danfoss Drive

NO.	DESCRIPTION	WARNING	ALARM/ TRIP	ALARM/ TRIP LOCK	PARAMETER REFERENCE
1	10 Volts low	Χ			
2	Live zero error	(X)	(X)		6-01
3	No motor	(X)			1-80
4	Mains phase loss	(X)	(X)	(X)	14-12
5	DC link voltage high	X			
6	DC link voltage low	X			
7	DC over voltage	Х	X		
8	DC under voltage	Х	X		
9	Inverter overloaded	X	X		
10	Motor ETR overtemperature	(X)	(X)		1-90
11	Motor thermistor over temperature	(X)	(X)		1-90
12	Torque limit	Χ	X		
13	Over current	Χ	X	X	
14	Earth fault	X	X	X	
15	Hardware mismatch		X	X	
16	Short circuit		X	X	
17	Control word timeout	(X)	(X)		8-04
18	Start failed		X		
23	Internal fan fault	Χ			
24	External fan fault	Х			14-53
25	Barke resistor short-circuited	Х			
26	Brake resistor power limit	(X)	(X)		2-13
27	Brake chopper short-circuited	X	X		
28	Brake check	(X)	(X)		2-15
29	Drive over temperature	X	X	X	
30	Motor phase U missing	(X)	(X)	(X)	4-58
31	Motor phase V missing	(X)	(X)	(X)	4-58
32	Motor phase W missing	(X)	(X)	(X)	4-58
33	Inrush fault		X	X	
34	Field bus communication fault	X	X		
35	Out of frequency range	X	X		
36	Mains failure	X	X		
37	Phase imbalance	X	X		
38	Internal fault		X	X	
39	Heatsink sensor		X	X	
40	Overload of Digital Output Terminal 27	(X)			5-00, 5-01
41	Overload of Digital Output Terminal 29	(X)			5-00, 5-02
42	Overload of Digital Output Terminal On X30/6	(X)			5-32
42	Overload of Digital Output Terminal On X30/7	(X)			5-33
46	Power card supply		X	X	
47	24 V supply low	X	X	X	
48	1.8 V supply low		X	X	
49	Speed limit	Х	(X)		1-86
50	AMA calibration failed		X		
51	AMA check U _{nom} and I _{nom}		X		
52	AMA low I _{nom}		X		
53	AMA motor too big		X		
54	AMA motor too small		X		
55	AMA parameter out of range		X		
56	AMA interrupted by user		X		
57	AMA timeout		X		
58	AMA internal fault	Х	X		
59	Current limit	Х			
60	External Interlock	Χ			

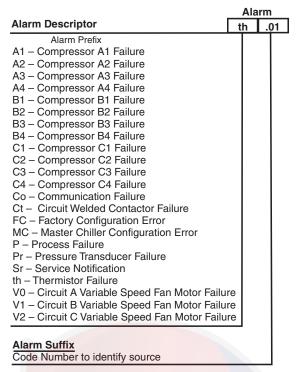
NOTES:
1. (X) = Dependent on parameter
2. Trip lock condition is an alarm for a condition that could cause damage to the drive. The alarm can only be reset by cycling power to the drive.

If a warning and an alarm are marked against a code in the table, this means that either a warning occurs before the alarm, or it can be specified whether it is a warning or an alarm that is

to be displayed for a given fault.

4. Alarms are shown on the drive in parameters 16-90 through 1695. Parameters can only be accessed with drive display service tool.

Table 47 — Variable Speed Fan Motor Alarm Details, Danfoss Drive (cont)


NO.	DESCRIPTION	WARNING	ALARM/ TRIP	ALARM/ TRIP LOCK	PARAMETER REFERENCE
62	Output frequency at maximum limit	Х			
64	Voltage limit	Х			
65	Control board over-temperature	X	Χ	X	
66	Heat sink temperature low	X			
67	Option configuration has changed		Χ		
69	Power card temperature		Х	X	
70	Illegal FC configuration			X	
71	PTC 1 Safe Stop	X	Χ		
72	Dangerous failure			X	
73	Safe stop auto restart				
76	Power unit setup	X			
79	Illegal PS configuration		Χ	X	
80	Drive initialized to default value		Χ		
91	Analog input 54 wrong settings			X	
92	NoFlow	X	Χ		22-2
93	Dry pump	X	Χ		22-2
94	End of curve	X	Χ		22-5
95	Broken belt	X	Χ		22-6
96	Start delayed	X			22-7
97	Stop delayed	X			22-7
98	Clock fault	X			0-7
201	Fire M was active				
202	Fire M limits exceeded				
203	Missing motor				
204	Locked rotor				
243	Brake IGBT	X	Χ		
244	Heatsink temperature	X	Χ	X	
245	Heatsink sensor		X	X	
246	Power card supply		X	X	
247	Power card temperature		X	X	
248	Illegal PS configuration		X	X	

NOTES:
1. (X) = Dependent on parameter
2. Trip lock condition is an alarm for a condition that could cause damage to the drive. The alarm can only be reset by cycling power to the drive.

3. If a warning and an alarm are marked against a code in the table, this means that either a warning occurs before the alarm, or it can be specified whether it is a warning or an alarm that is

to be displayed for a given fault.

Alarms are shown on the drive in parameters 16-90 through 1695. Parameters can only be accessed with drive display service tool.

Fig. 34 — Alarm Description

DIAGNOSTIC ALARM CODES AND **POSSIBLE CAUSES**

Motor Temperature Too High

A1.01 — Compressor A1

A2.01 — Compressor A2

A3.01 — Compressor A3

A4.01 — Compressor A4

B1.01 — Compressor B1

B2.01 — Compressor B2 B3.01 — Compressor B3

B4.01 — Compressor B4

C1.01 — Compressor C1

C2.01 — Compressor C2 C3.01 — Compressor C3

C4.01 — Compressor C4

Criteria for Trip — The alarm criterion is checked whether the compressor is ON or OFF. This alarm will be generated if the scroll protection module (SPM) detects a compressor motor PTC (positive temperature coefficient) resistance greater than 4500 ohms, indicating that the motor temperature is too high.

Action to be Taken — The circuit shuts down immediately or is not allowed to start.

Reset Method — Manual. PTC resistance must be less than 2500 ohms.

Possible Causes — If this condition is encountered, check the following items:

- Check for a PTC thermistor failure.
- Check for a compressor motor failure.
- Check for a wiring error.
- Check wiring terminations for corrosion.
- Check for operation outside of the limits.
- Check for condenser air recirculation.
- Check the circuit for proper charge.
- Check the EXV for proper operation.
- Check the EXV input devices, pressure transducer and temperature for accuracy.
- Check the liquid line filter drier for a restriction.

Crankcase Heater Failure

A1.02 — Compressor A1

A2.02 — Compressor A2

A3.02 — Compressor A3

A4.02 — Compressor A4

B1.02 — Compressor B1 B2.02 — Compressor B2

B3.02 — Compressor B3

B4.02 — Compressor B4

C1.02 — Compressor C1

C2.02 — Compressor C2

C3.02 — Compressor C3

C4.02 — Compressor C4

Criteria for Trip — The alarm criteria are checked whether the compressor is ON or OFF. The scroll protection module (SPM) monitors crankcase heater current draw. This family of alarms is generated if one of the following criteria is detected:

- The SPM fails to detect a crankcase current draw of at least 0.5 amp while the crankcase heater is ON.
- The SPM detects a crankcase current draw of at least 0.5 amp while the crankcase heater is OFF. The current is sensed internally on the SPM.

Action to be Taken — If a fault is detected, the affected compressor will be shut down or not allowed to start.

Reset Method — Manual

Possible Causes — If this condition is encountered, check the following items:

- Check the wiring to the crankcase heater.
- Check the crankcase heater for operation.
- Check the SPM crankcase heater output operation.
- Confirm unit configuration.

High Pressure Switch

A1.03 — Compressor A1

A2.03 — Compressor A2

A3.03 — Compressor A3

A4.03 — Compressor A4

B1.03 — Compressor B1

B2.03 — Compressor B2 B3.03 — Compressor B3

B4.03 — Compressor B4 C1.03 — Compressor C1

C2.03 — Compressor C2 C3.03 — Compressor C3

C4.03 — Compressor C4

Criteria for Trip — The alarm criterion is checked whether the circuit is ON or OFF. This alarm will be generated if the circuit high-pressure switch (HPS) opens. The scroll protection module (SPM) monitors the HPS. The 30RB units employ one HPS for each circuit. The HPS signal is connected to all of the SPM modules of the circuit.

Action to be Taken — The circuit shuts down immediately or is not allowed to start.

Reset Method — Manual

Possible Causes — If this condition is encountered, check the following items:

- Check the wiring of the high pressure switch circuit. Be sure the HPS is connected to all of the SPM boards in the circuit.
- Check the maximum condensing temperature (MCT) for the proper setting.
- Check for noncondensables in the refrigerant circuit.
- Check for condenser air re-circulation.
- Check for the proper refrigerant charge (overcharged).
- Check for operation beyond the limit of the machine.
- Check the condenser coils for debris or restriction.
- Check the condenser fans and motors for proper rotation and operation.
- Check the discharge service valve to be sure that it is open. A closed or restricted valve is a potential high pressure trip.
- Check the discharge pressure transducer for accuracy.
- Confirm unit configuration.

Motor Sensor PTC Out of Range

A1.04 — Compressor A1

A2.04 — Compressor A2

A3.04 — Compressor A3

A4.04 — Compressor A4

B1.04 — Compressor B1

B2.04 — Compressor B2

B3.04 — Compressor B3

B4.04 — Compressor B4

C1.04 — Compressor C1 C2.04 — Compressor C2

C3.04 — Compressor C3 C4.04 — Compressor C4

Criteria for Trip — The alarm criterion is checked whether the circuit is ON or OFF. The scroll protection module (SPM) monitors the compressor motor temperature. This alarm will be generated if the motor sensor PTC in the compressor resistance is less than 50 ohms or greater than 17,000 ohms.

Action to be Taken — The circuit shuts down immediately or not allowed to start.

Reset Method — Manual

Possible Causes — If this condition is encountered, check the following items:

- Check the sensor wiring to the scroll compressor protection module (SPM).
- Check for a faulty SPM.
- Check for a compressor failure.
- Check for noncondensables in the refrigerant circuit.
- Check for condenser air re-circulation.
- Check for the proper refrigerant charge (overcharged).
- Check for operation beyond the limit of the machine.
- Check the condenser coils for debris or restriction.
- Check the condenser fans and motors for proper rotation and operation.
- Check the discharge service valve to be sure that it is open.
- Check the discharge pressure transducer for accuracy.

Confirm unit configuration.

SPM Board Power Reset

A1.05 – Compressor A1

A2.05 – Compressor A2 A3.05 – Compressor A3

A4.05 – Compressor A4

B1.05 – Compressor B1

B2.05 – Compressor B2

B3.05 – Compressor B3

B4.05 - Compressor B4

C1.05 – Compressor C1

C2.05 – Compressor C2

C3.05 – Compressor C3

C4.05 – Compressor C4

Criteria for Trip — The alarm criterion is checked whether the compressor is ON or OFF. The scroll protection module (SPM) monitors the 24 vac at the compressor through the high pressure switch input channel. This alarm will be generated if the main base board receives a signal from the SPM board indicating that the compressor went through a power cycle.

Action to be Taken — The compressor is shut down immediately or not allowed to start.

Reset Method — Automatic

Possible Causes — If this condition is encountered, check the following items:

- Check the voltage from the main three phase power
- Check the 24 vac wiring connections to the scroll compressor protection module (SPM)
- Check for a faulty SPM.

SPM Board Low Control Voltage Alert

A1.06 - Compressor A1

A2.06 – Compressor A2

A3.06 – Compressor A3

A4.06 – Compressor A4

B1.06 – Compressor B1 B2.06 – Compressor B2

B3.06 – Compressor B3

B4.06 – Compressor B4

C1.06 – Compressor C1

C2.06 – Compressor C2

C3.06 – Compressor C3

C4.06 – Compressor C4

Criteria for Trip — The alarm criterion is checked whether the compressor is ON or OFF. The scroll protection module (SPM) monitors the 24 vac at the compressor through the high pressure switch input channel. This alarm will be generated if the main base board receives a signal from the SPM board indicating that the 24 vac level was lower than the allowed minimum threshold.

Action to be Taken — The compressor is shut down immediately or not allowed to start as to prevent any contactor chattering/welding from occurring.

Reset Method — Automatic

Possible Causes — If this condition is encountered, check the following items:

- Check the voltage from the main three phase power supply.
- Check the 24 vac wiring connections to the scroll compressor protection module (SPM).
- Check for a faulty SPM.

Loss of Communication with Compressor

Co.A1 — Board A1

Co.A2 — Board A2

Co.A3 — Board A3

Co.A3 — Board A3 Co.A4 — Board A4 Co.B1 — Board B1 Co.B2 — Board B2 Co.B3 — Board B3 Co.B4 — Board B4

Co.C1 — Board C1

Co.C2 — Board C2

Co.C3 — Board C3 Co.C4 — Board C4

Criteria for Trip — The alarm criterion is tested whether the unit is ON or OFF. If communication with the scroll compressor protection module (SPM) is lost for a period of 10 seconds, the alarm will be generated.

Action to be Taken — The affected compressor will be shut down.

Reset Method — Automatic, if communication is established, the compressor, if called for will start normally.

Possible Causes — If this condition is encountered, check the following items:

Check the power supply to the affected SPM.

- Check the address of the SPM to be sure that it is correct.
- Check the Local Equipment Network (LEN) wiring to be sure that it is connected properly.
- Confirm unit configuration.

Co.E1—Loss of Communication with EXV Board Number 1

Criteria for Trip — The alarm criterion is tested whether the unit is ON or OFF. If communication with EXV1 is lost for a period of 10 seconds, the alarm will be triggered.

Action to be Taken — If running, Circuit A and B will shut down normally. If Circuit A or Circuit B is not operating, it will not be allowed to start.

Reset Method — Automatic, if communication is established, the unit will start normally.

Possible Causes — If this condition is encountered, check the following items:

Check the power supply to EXV1.

- Check the address of the EXV1 to be sure that it is correct.
- Check the Local Equipment Network (LEN) wiring to be sure that it is connected properly.
- Confirm unit configuration.

<u>Co.E2</u> — <u>Loss of Communication with EXV Board Number 2</u> *Criteria for Trip* — The alarm criterion is tested whether the unit is ON or OFF, on 30RB210-300 units only.

Action to be Taken — If communication with EXV Board 2 is lost for a period of 10 seconds, the alarm will be triggered. If running, Circuit C will shut down normally. If Circuit C is not running, it will not be allowed to start.

Reset Method — Automatic, if communication is established, the unit will start normally.

Possible Causes — If this condition is encountered, check the following items:

Check the power supply to EXV Board 2.

- Check the address of the EXV Board 2 to be sure that it is correct.
- Check the Local Equipment Network (LEN) wiring to be sure that it is connected properly.
- Confirm unit configuration.

Co.F1 — Loss of Communication with Fan Board Number 1 Criteria for Trip — The criterion is tested whether the unit is ON or OFF. If communication with Fan Board 1 is lost for a period of 10 seconds, the alarm will be triggered.

Action to be Taken — For 30RB060-150 and 30RB210-250, Circuit A and B will shut down normally if they are running. For 30RB160-190 and 30RB275-300, Circuit A will shut down normally if it is running. If the circuit or circuits controlled by the board are not running, then they will not be allowed to start.

Reset Method — Automatic, if communication is established, the unit will start normally.

Possible Causes — If this condition is encountered, check the following items:

Check the power supply to Fan Board 1.

- Check the address of the Fan Board 1 to be sure that it is correct.
- Check the Local Equipment Network (LEN) wiring to be sure that it is connected properly.
- Confirm unit configuration.

<u>Co.F2</u> — <u>Loss of Communication with Fan Board Number 2</u> *Criteria for Trip* — The criterion is tested whether the unit is ON or OFF and on 30RB160-190, 275, and 300 only.

Action to be Taken — If communication with Fan Board 2 is lost for a period of 10 seconds, the alarm will be triggered. If running, Circuit B will shut down normally for 30RB160-190, 275 and 300. If Circuit B is not running for 30RB160-190, 275 and 300, then it will not be allowed to start.

Reset Method — Automatic, if communication is established, the unit will start normally.

Possible Causes — If this condition is encountered, check the following items:

• Check the power supply to Fan Board 2.

- Check the address of the Fan Board 2 to be sure that it is correct
- Check the Local Equipment Network (LEN) wiring to be sure that it is connected properly.
- Confirm unit configuration.

<u>Co.F3</u> — <u>Loss of Communication with Fan Board Number 3</u> <u>Criteria for Trip</u> — The criterion is tested whether the unit is ON or OFF, and on 30RB210-300 machines only. If communication with Fan Board 3 is lost for a period of 10 seconds, the alarm will be triggered.

Action to be Taken — If running, Circuit C will shut down normally for 30RB210-300. If the circuit is not running for 30RB210-300, then it will not be allowed to start.

Reset Method — Automatic, if communication is established, the unit will start normally.

Possible Causes — If this condition is encountered, check the following items:

• Check the power supply to Fan Board 3.

- Check the address of the Fan Board 3 to be sure that it is correct.
- Check the Local Equipment Network (LEN) wiring to be sure that it is connected properly.
- Confirm unit configuration.

<u>Co.O1</u> — <u>Loss of Communication with Free Cooling Board</u> <u>Criteria for Trip</u> — This alarm is for a free cooling machine only. This feature is not supported for a cooling only machine.

Action to be Taken - None

Reset Method — Automatic

Possible Causes — If this condition is encountered, confirm unit configuration.

<u>Co.O2</u> — <u>Loss of Communication with Electrical Heaters Board</u> *Criteria for Trip* — This alarm is for a heat pump machines only. This feature is not supported for a cooling only machine.

Action to be Taken — None

Reset Method — Automatic

Possible Causes — If this condition is encountered, confirm unit configuration.

Co.O3 — Loss of Communication with Energy Management Board

Criteria for Trip — The criterion is tested whether the unit is ON or OFF and when a function that requires the energy management module (EMM) is configured. If communication with the EMM is lost for a period of 10 seconds, the alarm will be triggered.

Action to be Taken — If any function controlled by the EMM (3-Step and 4-20 mA Demand Limit, 4-20 mA and Space Temperature Reset, Occupancy Override, and Ice Build) is active, that function will be terminated. If an EMM function is programmed, and communication is lost, the function will not be allowed to start.

Reset Method — Automatic, if communication is established, the functions will be enabled.

Possible Causes — If this condition is encountered, check the following items:

- Check configuration to see if the EMM is installed, (Configuration

 UNIT

 EMM). If (EMM=YES), check for a control option that requires the EMM that may be enabled. Correct configuration if not correct.
- Check the power supply to EMM.
- Check the address of the EMM to be sure that it is correct.
- Check the Local Equipment Network (LEN) wiring to be sure that it is connected properly.
- Check unit configuration to be sure that no options that require the EMM are enabled.

Co.O4 — Loss of Communication with Heat Reclaim Board Criteria for Trip — This alarm is tested whether the unit is ON or OFF and when the unit is configured for Heat Reclaim. If communication with the heat reclaim board is lost for a period of 10 seconds, the alarm will be triggered.

Action to be Taken — The unit will return to the air cooled mode.

Reset Method — Automatic, when communication is established, the functions will be enabled.

Possible Causes — If this condition is encountered, check the following items:

Check the power supply to heat reclaim board.

- Check the Local Equipment Network (LEN) wiring to be sure that it is connected properly.
- Check unit configuration to be sure that Heat Reclaim is enabled and unit does NOT contain the Heat Reclaim option.

Welded Contactor Failure

Ct.01 - Circuit A

Ct.02 - Circuit B

Ct.03 – Circuit C

Criteria For Trip — This alarm is tested for when the circuit is off (all compressors switched to off). The algorithm will evaluate saturated suction and saturated condensing temperatures to determine if the compressor is still running even though it has been commanded off.

Action to be Taken

- Unit capacity will go to and remain at 0%. The EXV, fan control, and cooler pump will continue their normal operation.
- If a high pressure, cooler flow, or cooler freeze failure occurs, then circuit operation is disabled. The critical alarm relay will be energized in order to shut off the main power supply.

Reset Method — Reset is manual.

FC.n0 — Initial Factory Configuration Required

Criteria for Trip — The criterion is tested whether the unit is ON or OFF. The alarm will be generated if the Configuration → UNIT→TONS=0.

Action to be Taken — The unit is not allowed to start.

Reset Method — Automatic after factory configuration is complete. The configuration must be manually completed. The password may default to 0113.

Possible Causes — If this condition is encountered, confirm the unit configuration.

FC.nn — Illegal Configuration

Criteria for Trip — The criterion is tested whether the unit is ON or OFF. The alarm will be generated if the one of the following configuration errors is detected by the control. The "nn" refers to the error code listed in Table 48.

Table 48 — Illegal Configuration Alarm Code

FC ERROR CODE	DESCRIPTION
01	Unit size is unknown.
02	Reclaim option selected for Heat Pump machine.
03	Hot Gas Bypass configured for a Heat Pump machine.
04	Number of Fans controlled by Motormaster® control is greater than expected.

Action to be Taken — The unit is not allowed to start.

Reset Method — Automatic after factory reconfiguration is completed. A power cycle may be required.

Possible Causes — If this condition is encountered, confirm the unit configuration.

MC.nn — Master Chiller Configuration Error

Criteria for Trip — The criterion is tested whether the unit is ON or OFF. The units must be configured as a Master and

Slave machine (*Configuration* \rightarrow *RSET* \rightarrow *MSSL*=1 and *Configuration* \rightarrow *RSET* \rightarrow *MSSL*=2), and one of the following configuration errors has been found. The "nn" refers to the error code listed in Table 49.

Action to be Taken — Unit not allowed to start in Master Slave control.

Reset Method — Automatic

Possible Causes — If this condition is encountered, confirm proper configuration.

P.01 — Water Exchanger Freeze Protection

Criteria for Trip — The alarm criteria are checked whether the unit is ON or OFF. If the entering or leaving water thermistor senses a temperature at the freeze point or less, the alarm will be generated. For a fresh water system (Configuration →SERV→FLUD=1), the freeze point is 34 F (1.1 C). For medium temperature brine systems (Configuration →SERV→FLUD=2), the freeze point is Brine Freeze Set Point (Configuration→SERV→LOSP).

Action to be Taken — Unit shut down or not allowed to start. Chilled water pump will be started.

Reset Method — Automatic, first occurrence in 24 hours if LWT rises to 6° F (3° C) above set point. Manual, if more than one occurrence in 24 hours.

Possible Causes — If this condition is encountered, check the following items:

- Check the entering and leaving fluid thermistors for accuracy.
- Check the water flow rate.
- Check loop volume. Low loop volume at nominal flow rates can in extreme cases bypass cold water to the cooler.
- Check for freezing conditions.
- Check heater tape and other freeze protection items for proper operation.
- Check glycol concentration and adjust LOSP accordingly.
- If the Leaving Water Set Point is above 40 F (4.4 C) and there is glycol in the loop, consider using the Medium Temperature Brine option (*Configuration* → *SERV* → *FLUD*=2) to utilize the brine freeze point instead of 34 F (1.1 C).

Low Suction Temperature

P.05 — Circuit A

P.06 — Circuit B

P.07 — Circuit C

Criteria for Trip — The criteria are tested whether the circuit is ON. This alarm is generated if one of the following criteria is met:

- If the circuit Saturated Suction Temperature is below
 -13 F (-25 C) for more than 30 seconds.
- If the circuit Saturated Suction Temperature is below -22 F (-30 C) for more than 8 seconds.
- If the circuit Saturated Suction Temperature is below –40 F (–40 C) for more than 3 seconds.

Action to be Taken — The circuit is shut down immediately.

Prior to the alarm trip, the control will take action to avoid the alarm. See Operating Modes 21, 22 and 23 on page 48.

Reset Method — Automatic, first occurrence in 24 hours. Manual, if more than one occurrence in 24 hours.

Table 49 — Master/Slave Alarm Code

MC ERROR CODE	MASTER	SLAVE	DESCRIPTION
01	х	Х	The master or slave water pump is not configured while the control of the lag unit pump is required (lag_pump = 1)
02	Х		Master and slave units have the same network address.
03	Х		There is no slave configured at the slave address
04	Х		Slave <i>pump_seq</i> incorrect configuration
05	×		There is a conflict between the master and the slave LWT option: the master is configured for EWT control while the slave is configured for LWT control.
06	×		There is a conflict between the master and the slave LWT option: the master is configured for LWT control while the slave is configured for EWT control.
07	×		There is a conflict between the master and the slave pump option: the master is configured for lag pump control while the slave is not configured for lag pump control.
08	x		There is a conflict between the master and the slave pump option: the master is not configured for lag pump control while the slave is configured for lag pump control.
09	Х	Х	The slave chiller is in local or remote control (<i>chilstat = 3</i>)
10	Х	Х	The slave chiller is down due to fault (<i>chilstat = 5</i>)
11	Х		The master chiller operating type is not Master: master_oper_typ and master_status = off
12	Χ	Х	No communication with slave.
13	Х		Master and slave heat/cool status are not the same.

LEGEND

EWT — Entering Water Temperature Leaving Water Temperature

Possible Causes — If this condition is encountered, check the following items:

- Check the sensor wiring to Main Base Board (P.05 and P.06) or Fan Board 3 (P.07).
- Check the board for a faulty channel.
- Check for a faulty transducer.
- Check cooler water flow.
- Check loop volume.
- Check EXV operation.
- Check for a liquid line refrigerant restriction, filter drier, service valve, etc.
- Check the refrigerant charge.
- If the Leaving Water Set Point is above 40 F (4.4 C) and there is glycol in the loop, consider using the Medium Temperature Brine option (Configuration→ $SERV \rightarrow FLUD=2$) to utilize the brine freeze point instead of 34 F (1.1 C).

High Superheat

P.08 — Circuit A

P.09 — Circuit B

P.10 — Circuit C

Criteria for Trip — The criteria are tested whether the circuit is ON. This alarm is generated if all of the following criteria

- 1. The EXV position is equal to or greater than 98%.
- The circuit's Suction Superheat (Suction Gas Temperature – Saturated Suction Temperature) is greater than 54 F (30.0 C).
- 3. The circuit's Saturated Suction Temperature is less than Maximum Operating Pressure (MOP) set point (Config*uration* \rightarrow *SERV* \rightarrow *MOP*) for more than 5 minutes.

Action to be Taken — The circuit is shut down normally.

Reset Method — Manual.

Possible Causes — If this condition is encountered, check the

- Check the suction pressure transducer wiring to Main Base Board (P.08 and P.09) or Fan Board 3 (P.10).
- Check the board for a faulty channel.
- Check for a faulty transducer.
- Check the suction gas thermistor wiring to EXV Board 1 (P.08 and P.09) or to EXV Board 2 (P.10)
- Check the suction gas thermistor sensor for accuracy.

- Check for EXV Board 1 (P.08 and P.09) or EXV Board 2 (P.10) faulty channel.
- Check EXV operation.
- Check for a liquid line refrigerant restriction, filter drier, service valve, etc.
- Check the refrigerant charge.

Low Superheat

P.11 — Circuit A P.12 — Circuit B

P.13 — Circuit C

Criteria for Trip — The criteria are tested whether the circuit is ON. This alarm is generated if the following criterion is met:

The EXV position is equal to or less than 5% and the circuit's Suction Superheat (Suction Gas Temperature – Saturated Suction Temperature) is less than the Suction Superheat Set Point (Configuration \rightarrow SERV \rightarrow SHP.A, Configuration \rightarrow $SERV \rightarrow SHP.B$, or Configuration $\rightarrow SERV \rightarrow SHP.C$) by at least 5° F (2.8° C) or the circuit Saturated Suction Temperature is greater than Maximum Operating Pressure (MOP) set point (*Configuration* \rightarrow *SERV* \rightarrow *MOP*) for more than 5 minutes.

Action to be Taken — The circuit is shut down normally.

Reset Method — Automatic, first occurrence in 24 hours. Manual, if more than one occurrence in 24 hours.

Possible Causes — If this condition is encountered, check the following items:

- Check the suction pressure transducer wiring to Main Base Board (P.11 and P.12) or Fan Board 3 (P.13).
- Check the board for a faulty channel.
- Check for a faulty transducer.
- Check the suction gas thermistor wiring to EXV Board 1 (P.08 and P.09) or to EXV Board 2 (P.10)
- Check the suction gas thermistor sensor for accuracy.
- Check for EXV Board 1 (P.11 and P.12) or EXV Board 2 (P.13) faulty channel.
- Check EXV operation.
- Confirm Maximum Operating Pressure Set Point.
- Check the refrigerant charge.

P.14 — Cooler Interlock Failure

Criteria for Trip — The criteria are tested whether the unit is ON or OFF. This algorithm monitors the cooler flow switch circuit, which may include field-installed cooler pump interlock (PMPI) contacts. The pump interlock and flow switch are wired in series, therefore either device can cause a cooler interlock failure. This alarm is generated if one of the following criteria is met:

- The circuit (flow switch and optional pump interlock installed at TB5-1 and 2) fails to close within the OFF to ON delay (*Configuration* → *OPTN* → *DELY*).
- 2. If the unit is the lag chiller under Master/Slave Control and the circuit fails to close within 1 minute after its pump is commanded ON.
- 3. The circuit opens while the machine is ON.
- 4. If the remote interlock switch is CLOSED while the machine is ON (units with EMM only).
- 5. If the machine is configured for Cooler Pump Control and the circuit does not open within 2 minutes.
- The circuit fails to close within the OFF to ON delay when the cooler pump has been commanded ON for freeze protection.

Action to be Taken — The unit is shut down immediately, or not allowed to start.

Reset Method — Automatic, if the alarm occurs while the machine is at Stage 0 (no compressors ON). Manual reset if machine was at Stage 1 or greater.

Possible Causes — If this condition is encountered, check the following items:

- Check the chilled water flow switch operation.
- Check for water flow. Be sure all water isolation valves are open. Check the water strainer for a restriction.
- Check the interlock wiring circuit.
- Check for a power supply to the pump.
- Check for a control signal to the pump controller.
- Check the chilled water pump operation.
- Check the cooler pump contactor for proper operation.

P.15 — Condenser Flow Switch Failure

Criteria for Trip — Condenser flow switch has not closed within 1 minute after condenser pump output has energized or opens during normal operation. This alarm is for units with the heat reclaim option only.

Action to be Taken — The unit will return to the air cooled mode.

Reset Method — Manual.

Possible Causes — If this condition is encountered, check the following items:

- Check the condenser water flow switch operation.
- Check for low water flow. Be sure all water isolation valves are open.
- Check for plugged water strainer.
- Check the interlock wiring circuit.
- Check the power supply to the pump.
- Check for a control signal to the pump starter.
- Check the condenser water pump operation.
- Check the condenser pump contactor for proper operation.

Compressor Not Started or Pressure Not Established

- P.16 Compressor A1
- P.17 Compressor A2
- P.18 Compressor A3
- P.19 Compressor A4
- P.20 Compressor B1
- P.21 Compressor B2
- P.22 Compressor B3
- P.23 Compressor B4
- P.24 Compressor C1
- P.25 Compressor C2
- P.26 Compressor C3
- P.27 Compressor C4

Criteria for Trip — The criteria are tested whether the unit is ON or in Service Test. This algorithm monitors the pressure

differential across the compressor to prove proper rotation of the compressor.

During normal operation with the start of a compressor, the discharge pressure for the circuit or the compressor differential (Discharge Pressure – Suction Pressure) must increase 10 psig (69 kPa) after 2 minutes. If this criterion is not met, the alarm is generated.

Action to be Taken — The circuit is shut down immediately.

Reset Method — Manual

Possible Causes — If this condition is encountered, check the following items:

- Check for power to the compressor.
- Check control voltage to the compressor contactor. On 208-volt systems, be sure the proper tap on TRAN1 is utilized.
- Check for proper electrical phasing of the unit power supply.
- Check the compressor contactor operation.
- Check the discharge and suction pressure transducers for accuracy.
- Check the wiring and location of the discharge and suction pressure transducers.

<u>P.28</u> — Electrical Box Thermostat Failure/Reverse Rotation Criteria for Trip — The criterion is tested whether the unit is ON. This alarm is generated if the signal is open.

Action to be Taken — The unit is not allowed to start.

Reset Method — Automatic, once the phasing is corrected.

Possible Causes — If this condition is encountered, check the following items:

- Check the power wiring for proper phasing.
- Check the sensor wiring to reverse rotation protection board.

P.29 — Loss of Communication with System Manager

Criteria for Trip — The criterion is tested whether the unit is ON or OFF. This alarm is generated if the System Manager had established communications with the machine and is lost for more than 2 minutes.

Action to be Taken — The action to be taken by the control depends on the configuration. If Auto Start when SM lost is enabled, (Configuration→SERV→AU.SM=YES), then the unit will force the CCN Chiller Start Stop (Run Status→R.CCN→CH.SS) to ENBL and clear all forced points from the System Manager. The unit will revert to stand-alone operation.

Reset Method — Automatic, once communication is re-established.

Possible Causes — If this condition is encountered, check the following items:

- Check communication wiring.
- Check the power supply to the System Manager and unit controls.

P.30 — Master/Slave Communication Failure

Criteria for Trip — The criterion is tested whether the units are ON or OFF and a Master and Slave machine has been configured, (Configuration→RSET→MSSL=1 and Configuration→RSET→MSSL=2). If communication is lost for more than 3 minutes, this alarm is generated.

Action to be Taken — Dual chiller control will be disabled and each unit will operate in Stand-Alone mode.

Reset Method — Automatic, once communication is re-established.

Possible Causes — If this condition is encountered, check the following items:

- Check the CCN wiring.
- Check for control power to each Main Base Board, Master and Slave.

• Confirm correct configuration.

P.31 — Unit is in Emergency Stop

Criteria for Trip — The criterion is tested whether the units are ON or OFF and the machine receives a Carrier Comfort Network® (CCN) command for an Emergency Stop.

Action to be Taken — Unit will stop, or not allowed to start.

Reset Method — Automatic, once a return to normal command is received.

Possible Causes — If this condition is encountered, check for CCN Emergency Stop command.

Cooler Pump Fault

P.32 — Pump 1 Fault

P.33 — Pump 2 Fault

Criteria for Trip — The criterion is tested whether the units are ON or OFF. This alarm will be generated if the cooler pump interlock opens. When starting the pump, the control must read a closed circuit for 3 consecutive reads. If the pump is operating and the circuit opens, the alarm will be generated immediately.

Action to be Taken — The pump and machine will be shut down. If there is another pump available, the control will start that pump, restart the machine and clear the alarm. If no other pump is available, the unit will remain OFF.

Reset Method — Manual.

Possible Causes — If this condition is encountered, check the following items:

- Check the interlock wiring circuit.
- Check for a control signal to the pump controller.
- Check the cooler pump contactor for proper operation.
- Check control voltage for proper voltage. On 208-volt systems, be sure the proper tap on TRAN1 is utilized.

Reclaim Operation Failure

P.34 — Circuit A

P.35 — Circuit B

Criteria for Trip — Reclaim operation failure due to high SCT. This alarm is for units with the heat reclaim option only.

Action to be Taken — The affected circuit will return to air cooled mode.

Reset Method — Manual.

Possible Causes — If this condition is encountered, check the following items:

- Check for low water flow. Be sure all water isolation valves are open.
- Check for plugged water strainer.
- Check for fouled tubes in reclaim condenser.

Repeated High Discharge Gas Overrides

P.37 — Circuit A

P.38 — Circuit B

P.39 — Circuit C

Criteria for Trip — The criterion is tested when the circuit is ON. This alarm will be tripped if the circuit capacity is reduced more than 8 times in 30 minutes due to high discharge gas temperatures. If no override occurs in a 30-minute period, the counter is reset.

Action to be Taken — The affected circuit will be shut down.

Reset Method — Automatic, after 30 minutes. If the alarm is cleared via the Manual method, the counter will be reset to zero

Possible Causes — If this condition is encountered, check the following items:

- Check the maximum condensing temperature (MCT) for the proper setting.
- Check for noncondensables in the refrigerant circuit.
- Check for condenser air re-circulation.

- Check for the proper refrigerant charge (overcharged).
- Check for operation beyond the limit of the machine.
- Check the condenser coils for debris or restriction.
- Check the condenser fans and motors for proper rotation and operation.
- Check the discharge service valve to be sure that it is open. Check the discharge pressure transducer for accuracy.
- Confirm unit configuration.

Repeated Low Suction Temperature Overrides

P.40 – Circuit A

P.41 – Circuit B

P.42 – Circuit C

Criteria for Trip — This alarm was added in software version 1.09. The criterion is active when circuit is ON. If the circuit's capacity is reduced more than 6 times by the Capacity Override 23 (Circuit A), 24 (Circuit B), or 25 (Circuit C) for the respective circuit, without at least 30 minutes elapsing between the capacity reductions, the alarm is triggered. If at least 30 minutes elapses without a reduction in capacity, the counter is reset to zero.

Action to be Taken — Circuit shut down.

Reset Method — Manual.

Possible Causes — If this condition is encountered, check the following items:

- Confirm unit configuration.
- Check EXV operation.
- Check for a liquid line refrigerant restriction, service valve partially closed, filter drier with excessive pressure drop.
- Check the refrigerant charge.
- Check suction pressure transducer accuracy.
- Check return gas thermistor accuracy.
- Check Circuit Superheat Set Point (Configuration
 →SERV→SHP.A, SHP.B, or SHP.C).
- Check if system contains antifreeze (Configuration
 →SERV→FLUD=2).
- Check Brine Freeze Set Point (*Configuration* → *SERV* → *LOSP*) if an antifreeze solution is used.
- · Check fluid flow rate.
- Check strainer for a restriction, clean if necessary.
- Check for cooler fouling.
- Check compressor oil level. If oil level is above the top of the sightglass, then oil may be logging in the cooler. Adjust oil level in compressor(s).

P.97 — Water Exchanger Temperature Sensors Swapped

Criteria for Trip — The alarm criterion is checked when the chiller is ON and one or more compressors is running. This alarm will be tripped if the entering water temperature is less than the leaving water temperature for more than 1 minute.

Action to be Taken — The chiller is shut down immediately.

Reset Method — Manual

Possible Causes — If this condition is encountered, check the following items:

- Check LWT and EWT wiring at main base board (connector J6, channels 1,2).
- Check for a faulty entering or leaving water temperature sensor
- Check cooler nozzles for proper water temperature sensor locations.

Discharge Transducer Failure

Pr.01 — Circuit A

Pr.02 — Circuit B

Pr.03 — Circuit C

Criteria for Trip — The criterion is tested whether the circuit is ON or OFF. This alarm is generated if the voltage as sensed by the MBB or FB3 is 0 vdc.

Action to be Taken — The circuit is shut down normally, or not allowed to start.

Reset Method — Automatic, once the transducer voltage is greater than 0 vdc.

Possible Causes — If this condition is encountered, check the following items:

- Check the sensor wiring to main base board (Pr.01 and Pr.02).
- Check the sensor wiring to Fan Board 3 (Pr.03).
- Check the board for a faulty channel.
- Check for a faulty transducer.
- Confirm unit configuration.

Suction Transducer Failure

Pr.04 — Circuit A

Pr.05 — Circuit B

Pr.06 — Circuit C

Criteria for Trip — The criteria are tested whether the circuit is ON or OFF. The alarm is generated if one of the following criteria is met:

- 1. This alarm is generated if the voltage as sensed by the MBB or FB3 is 0 vdc.
- 2. The circuit is ON in cooling mode and the saturated suction temperature for the circuit is greater than the referenced cooler leaving temperature (RCLT) for more than 60 seconds.

RCLT = EWT - (EWT - LWT) * circuit running tons / total tons

Action to be Taken — The circuit is shut down immediately, or not allowed to start.

Reset Method — Automatic when the suction pressure reading is within the range except if it was tripped by criteria 2.

The reset will be manual if the alarm trips 3 times within a 24-hour period or if it has been tripped by criteria 2.

Possible Causes — If this condition is encountered, check the following items:

- Check for power to the compressor (i.e., circuit breaker, contactor operation).
- Check the sensor wiring to main base board (Pr.04 and Pr.05).
- Check the sensor wiring to Fan Board 3 (Pr.06).
- Check the board for a faulty channel.
- · Check for a faulty transducer.
- Check for a faulty leaving water temperature sensor.
- Confirm unit configuration.
- Check EWT sensor.

Reclaim Pumpdown Pressure Transducer

Pr.07 — Circuit A

Pr.08 — Circuit B

Criteria for Trip — Tested when the unit is On or Off. This alarm is generated if the voltage as sensed by the heat reclaim board is 0 vdc. This alarm is for units with the heat reclaim option only.

Action to be Taken — The circuit will initiate a reclaim to air cooled changeover and stay in air cooled mode if it had been operating in reclaim mode.

Reset Method — Automatic when the transducer reading returns to normal.

Possible Causes — If this condition is encountered, check the following items:

- Check the sensor wiring to heat reclaim board.
- Check for a faulty transducer.
- Check the board for a faulty channel.
- Confirm unit configuration.

Sr.nn — Service Maintenance Alert

Criteria for Trip — This alert is tested whether the unit is ON or OFF and the Servicing Alert decisions listed under Time Clock→MCFG have been enabled. The alarm will be generated if the one of the following configuration errors is detected by the control. The "nn" refers to the error code listed in Table 50.

Action to be Taken — None.

Reset Method — Manual, after the service has been completed and $Time\ Clock \rightarrow MCFG \rightarrow RS.SV$ is reset for the alert.

Possible Causes — If this condition is encountered, confirm the machine's configuration.

Table 50 — Service Maintenance Alert Codes

CODE	DESCRIPTION
01	Circuit A Loss of Refrigerant Charge
02	Circuit B Loss of Refrigerant Charge
03	Circuit C Loss of Refrigerant Charge
04	Water Loop Size Warning
05	Air Exchanger Cleanliness Warning
06	Pump 1 Servicing Required
07	Pump 2 Servicing Required
08	Reclaim Pump Servicing Required
09	Water Filter Servicing Required

Water Exchanger Fluid Thermistor Failure

th.01 — Entering

th.02 — Leaving

Criteria for Trip — If the temperature as measured by the thermistor is outside of the range –40 F (–40 C) to 240 F (115.6 C).

Action to be Taken — The unit shuts down normally, or is not allowed to start.

Reset Method — Automatic, the alarm will reset once the thermistor reading is within the expected range.

Possible Causes — If this condition is encountered, check the following items:

- Check the sensor wiring to the main base board.
- Check the sensor for accuracy.

For thermistor descriptions, identifiers and connections, see Thermistors on page 78.

th.03 — Circuit A Defrost Thermistor Failure

th.04 — Circuit B Defrost Thermistor Failure

Criteria for Trip — This alarm is for a heat pump machine only. This feature is not supported for a cooling only machine.

Action to be Taken - None

Reset Method — Automatic

Possible Causes — If this condition is encountered, confirm the machine's configuration.

th.08 — Entering Condenser Reclaim Thermistor

Criteria for Trip — Tested when the unit is On or Off. This alarm is generated if the temperature measured by the sensor is outside the range of -40 F (-40 C) to 240 F (115.6 C). This alarm is for units with the heat reclaim option only.

Action to be Taken — The unit will return to the air-cooled mode.

Reset Method — Automatic, the alarm will reset once the thermistor reading is within the expected range.

Possible Causes — If this condition is encountered, check the following items:

- Check the sensor wiring to the heat reclaim board.
- Check for a faulty thermistor.
- Check the board for a faulty channel.
- Confirm unit configuration.

th.09 — Leaving Condenser Reclaim Thermistor

Criteria for Trip — Tested when the unit is On or Off. This alarm is generated if the temperature measured by the sensor is outside the range of –40 F (–40 C) to 240 F (115.6 C). This alarm is for units with the heat reclaim option only.

Action to be Taken — None

Reset Method — Automatic, the alarm will reset once the thermistor reading is within the expected range.

Possible Causes — If this condition is encountered, check the following items:

- Check the sensor wiring to the heat reclaim board.
- Check for a faulty thermistor.
- Check the board for a faulty channel.
- Confirm unit configuration.

th.10 — OAT Thermistor Failure

Criteria for Trip — If the outdoor-air temperature as measured by the thermistor is outside of the range –40 F (–40 C) to 240 F (115.6 C).

Action to be Taken — Unit shuts down under normal conditions or is not allowed to start. Temperature reset based on outdoor air temperature will be disabled.

The OAT sensor controls the cooler heaters. If this sensor fails, the cooler heaters will be energized when the machine stages to 0.

Reset Method — Automatic, the alarm will reset once the thermistor reading is within the expected range and Temperature reset based on outdoor-air temperature will be enabled.

Possible Causes — If this condition is encountered, check the following items:

- Check the sensor wiring to the main base board.
- · Check for a faulty thermistor.

For thermistor descriptions, identifiers and connections, see Thermistors on this page.

th.11 — Master/Slave Common Fluid Thermistor

Criteria for Trip — This alarm criterion is checked whether the unit is ON or OFF and has been configured for Dual Chiller Control. The alarm will be triggered if the Dual Chiller Common Fluid temperature as measured by the thermistor is outside of the range –40 F (–40 C) to 240 F (115.6 C).

Action to be Taken — Dual Chiller Control disabled. Units operate as a stand-alone machine.

Reset Method — Automatic, once the thermistor reading is within the expected range. The Dual Chiller algorithm will resume once the alarm is cleared.

Possible Causes — If this condition is encountered, check the following items:

- Check the sensor wiring to the main base board.
- Check for a faulty thermistor.

For thermistor descriptions, identifiers and connections, see Thermistors on this page.

Suction Gas Thermistor

th.12 — Circuit A

th.13 — Circuit B

th.14 — Circuit C

Criteria for Trip — This alarm criterion is checked whether the unit is ON or OFF. If the suction gas temperature as measured by the thermistor is outside of the range –40 F (–40 C) to 240 F (115.6 C), the alarm will be triggered.

Action to be Taken — The affected circuit shuts down normally.

Reset Method — Automatic, once the thermistor reading is within the expected range. The affected circuit will restart once the alarm has cleared.

Possible Causes — If this condition is encountered, check the following items:

- Check the sensor wiring to the EXV board.
- Check the board for a faulty channel.
- Check for a faulty thermistor.

For thermistor descriptions, identifiers and connections, see Thermistors on this page.

Condenser Subcooling Liquid Thermistor

th.18 — Circuit A

th.19 — Circuit B

Criteria for Trip — Tested when the unit is On or Off. If the temperature as measured by the sensor is outside of the range of –40 F (–40 C) to 240 F (115.6 C). This alarm is for units with the heat reclaim option only.

Action to be Taken — The unit will return to the air cooled mode.

Reset Method — Automatic, the alarm will reset once the reading is within the expected range.

Possible Causes — If this condition is encountered, check the following items:

- Check the sensor wiring to the EMM HR.
- Check for a faulty thermistor.
- Confirm unit configuration.

th.21 — Space Temperature Sensor Failure

Criteria for Trip — This alarm criterion is checked whether the unit is ON or OFF and if Space Temperature Reset has been enabled. If the outdoor-air temperature as measured by the thermistor is outside of the range –40 F (–40 C) to 240 F (115.6 C), the alarm will be triggered.

Action to be Taken — Unit operates under normal control. Temperature Reset based on Space Temperature is disabled.

Reset Method — Automatic, once the thermistor reading is within the expected range. The Space Temperature Reset will resume once the alarm has cleared.

Possible Causes — If this condition is encountered, check the following items:

- Check the sensor wiring to the energy management module.
- Check the board for a faulty channel.
- Check for a faulty thermistor.

For thermistor descriptions, identifiers and connections, see Thermistors below.

Variable Speed Fan Motor Failure

V0-xx — Circuit A

V1-xx — Circuit B

V2-xx — Circuit C

Criteria for Trip — See Table 25 on page 29 and Table 47 on page 68.

Action to be Taken —

- Alert No action
- Alarm Circuit is stopped

Reset Method — Automatic reset.

Possible Causes — See Table 47 on page 68.

Sensors — The electronic control uses up to 12 thermistors to sense temperatures and up to 8 transducers to sense pressure for controlling chiller operation. These sensors are outlined below

Thermistors (Tables 51-52B) — Thermistors that are monitoring the chiller's operation include: cooler entering water, cooler leaving water, dual chiller leaving water, compressor suction gas temperature, and outside air thermistors. These thermistors are 5,000 ohms at 77 F (25 C) and are identical in temperature versus resistance. The space temperature

thermistor is 10,000 ohms at 77 F (25 C) and has a different temperature vs. resistance.

COOLER ENTERING FLUID SENSOR (T1) — On all sizes, this thermistor is installed in a well in the entering water nozzle of the cooler.

COOLER LEAVING FLUID SENSOR (T2) — On all sizes, this thermistor is installed in a well in the leaving water nozzle of the cooler. See Fig. 35 and 36.

OUTDOOR AIR TEMPERATURE (T3) — This sensor is factory-installed and is attached to the bottom of the condenser mounting rail.

DUAL CHILLER LWT (T6) — On duplex chillers, 30RB315-390, a factory-supplied, field-installed well and thermistor are installed in the common supply water header of the two modules.

COMPRESSOR SUCTION GAS TEMPERATURE (T4, T5, T7) — This thermistor is installed in a well located in the common suction line for the circuit. There is one thermistor for each circuit

CONDENSING LEAVING FLUID SENSOR (T9) — This thermistor is on units with heat reclaim option only. This thermistor is installed in a well in the leaving water nozzle of the reclaim condenser.

CONDENSING ENTERING FLUID SENSOR (T10) —

This thermistor is on units with heat reclaim option only. This thermistor is installed in a well in the entering water nozzle of the reclaim condenser.

SUBCOOLED CONDENSER GAS TEMPERATURE (T11, T12) — This thermistor is on units with heat reclaim option only. This thermistor is installed in a well in the common liquid line of each circuit.

REMOTE SPACE TEMPERATURE (T8) — This sensor (part no. 33ZCT55SPT) is a field-supplied, field-installed accessory mounted in the indoor space and is used for water temperature reset. The sensor should be installed as a wall-mounted thermostat would be (in the conditioned space where it will not be subjected to either a cooling or heating source or direct exposure to sunlight, and 4 to 5 ft above the floor).

Space temperature sensor wires are to be connected to terminals in the unit main control box. See Fig. 37. The space temperature sensor includes a terminal block (SEN) and a RJ11 female connector. The RJ11 connector is used access into the Carrier Comfort Network® (CCN) at the sensor.

To connect the space temperature sensor (see Fig. 37):

- Using a 20 AWG twisted pair conductor cable rated for the application, connect one wire of the twisted pair to one SEN terminal and connect the other wire to the other SEN terminal located under the cover of the space temperature sensor.
- 2. Connect the other ends of the wires to terminals 7 and 8 on TB6 located in the unit control box.

Units on the CCN can be monitored from the space at the sensor through the RJ11 connector, if desired. To wire the RJ11 connector into the CCN:

- 1. Cut the CCN wire and strip ends of the red (+), white (ground), and black (-) conductors. (If another wire color scheme is used, strip ends of appropriate wires.)
- 2. Insert and secure the red (+) wire to terminal 5 of the space temperature sensor terminal block.
- 3. Insert and secure the white (ground) wire to terminal 4 of the space temperature sensor.
- 4. Insert and secure the black (–) wire to terminal 2 of the space temperature sensor.

IMPORTANT: The cable selected for the RJ11 connector wiring MUST be identical to the CCN communication bus wire used for the entire network. Refer to Table 12 for acceptable wiring.

5. Connect the other end of the communication bus cable to the remainder of the CCN communication bus.

NOTE: The energy management module (EMM) is required for this accessory.

Transducers — Table 53 lists pressure transducers for controlling chiller operation.

Table 51 — Thermistor Identification

THERMISTOR ID	DESCRIPTION	RESISTANCE AT 77 F (25 C)	CONNECTION POINT	COMMENT
EWT (T1)	Entering Water Thermistor	5k Ω	MBB-J6-CH2	_
LWT (T2)	Leaving Water Thermistor	5k Ω	MBB-J6-CH1	_
OAT (T3)	Outdoor Air Thermistor	5k Ω	MBB-J6-CH4	_
SGTA (T4)	Circuit A Suction Gas Thermistor	5k Ω	EXV1-J3-A, THA	_
SGTB (T5)	Circuit B Suction Gas Thermistor	5k Ω	EXV1-J3-B, THB	_
SGTC (T7)	Circuit C Suction Gas Thermistor	5k Ω	EXV2-J3-A, THA	_
DUAL (T6)	Dual Chiller LWT Thermistor	5k Ω	MBB-J6-CH3	_
SPT (T8)	Space Temperature Thermistor	10k Ω	EMM-J6-CH2	_
HLWT (T9)	Condenser Leaving Water Thermistor	5k Ω	EMM HR-J5-CH1	Heat Reclaim Option
HEWT (T10)	HEWT (T10) Condenser Entering Water Thermistor		EMM HR-J5-CH2	Heat Reclaim Option
HRT.A (T11)	Sub Condenser Gas Temp A	5k Ω	EMM HR-J5-CH3	Heat Reclaim Option
HRT.B (T12)	Sub Condenser Gas Temp B	5k Ω	EMM HR-J5-CH4	Heat Reclaim Option

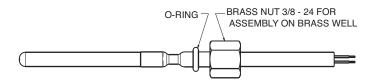


Fig. 35-5K Thermistor (P/N 30RB660036)

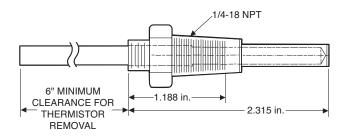
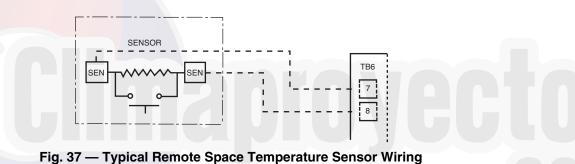



Fig. 36 — Entering and Leaving Dual Water Thermistor Well (P/N 00PPG000008000A)

80

Table 52A — 5K Thermistor Temperature (°F) vs Resistance

			DEGISTANCE		DEGIGEANGE	
TEMP (F)	RESISTANCE (Ohms)	TEMP (F)	RESISTANCE (Ohms)	TEMP (F)	RESISTANCE (Ohms)	
-25	98,010	59 60	7,686 7,665	143 144	1,190	
-24 -23	94,707 91,522	61	7,665 7,468	145	1,165 1,141	
-22	88,449 85,486	62 63	7,277 7,091	146 147	1,118 1,095	
–21 –20	82,627	64	6,911	148	1,072	
–19 –18	79,871 77,212	65 66	6,735 6,564	149 150	1,050 1,029	
-17	I 74.648	67	6,399	151	1,007	
–16 –15	72,175 69,790	68 69	6,238 6,081	152 153	986 965	
-14	67,490	70	5,929	154	945	
–13 –12	65,272 63,133	71 72	5,781 5,637	155 156	925 906	
-11	61,070	73	5,497	157	887	
–10 <i>–</i> 9	59,081 57,162	74 75	5,361 5,229	158 159	868 850	
-8	55,311	76	5,101	160	832	
–7 –6	53,526 51,804	77 78	4,976 4,855	161 162	815 798	
-5	50,143	79	4,737	163	782	
–4 –3	48,541 46,996	80 81	4,622 4,511	164 165	765 750	
−2 −1	45,505	82 83	4,403 4,298	166 167	734 719	
-1 0	44,066 42,679	84	4,196	168	705	
1 2	41,339 40,047	85 86	4,096 4,000	169 170	690 677	
3	38,800	87	3,906	171	663	
4 5	37,596 36,435	88 89	3,814 3,726	172 173	650 638	
6	35.313	90	3,640	174	626	
7 8	34,231 33,185	91 92	3,556 3,474	175 176	614 602	
9	32,176	93	3,395	177	591	
10 11	31,202 30,260	94 95	3,318 3,243	178 179	581 570	
12 13	29,351 28,473	96 97	3,170 3,099	180 181	561 551	
14	27,624	98	3,031	182	542	
15 16	26,804 26,011	99 100	2,964 2,898	183 184	533 524	
17	25.245	101	2,835	185	516	
18 19	24,505 23,789	102 103	2,773 2,713	186 187	508 501	
20 21	23,096 22,427	104 105	2,655 2,597	188 189	494 487	
22	21,779	106	2,542	190	480	
23 24	21,153 20,547	107 108	2,488 2,436	191 192	473 467	
25	19,960	109	2,385	193	461	
26 27	19,393 18,843	110 111	2,335 2,286	194 195	456 450	
28 29	18,311 17,796	112 113	2,239 2,192	196 197	445 439	
30	17,297	114	2,147	198	434	
31 32	16,814 16,346	115 116	2,103 2,060	199 200	429 424	
33	15,892	117	2,018	201	419	
34 35	15,453 15,027	118 119	1,977 1,937	202 203	415 410	
36	14,614	120	1,898 1,860	204 205	405 401	
37 38	14,214 13,826	121 122	1,822	206	396	
39 40	13,449 13,084	123 124	1,786 1,750	207 208	391 386	
41	12,730	125	1,715	209	382	
42 43	12,387 12,053	126 127	1,680 1,647	210 211	377 372	
44	11,730	128	1,614	212	367	
45 46	11,416 11,112	129 130	1,582 1,550	213 214	361 356	
47 48	10,816 10,529	131 132	1,519 1,489	215 216	350 344	
49	10,250	133	1,459	217	338	
50 51	9,979 9,717	134 135	1,430 1,401	218 219	332 325	
52	9,461	136	1,373	220	318	
53 54	9,213 8,973	137 138	1,345 1,318	221 222	311 304	
55 56	8,739 8,511	139 140	1,291 1,265	223 224	297 289	
57	8,291	141	1,240	225	282	
58	8,076	142	1,214			

Table 52B — 5K Thermistor Temperature (°C) vs Resistance/Voltage

TEMP	RESISTANCE	TEMP	RESISTANCE	TEMP	RESISTANCE
(C)	(Ohms)	(C)	(Ohms)	(C)	(Ohms)
-32	100.260	15	7,855	62	1,158
-31	94,165	16	7,499	63	1,118
-30	88,480	17	7,161	64	1,079
-29	83,170	18	6,840	65	1,041
-28	78,125	19	6,536	66	1,006
-27	73,580	20	6,246	67	971
-26	69,250	21	5,971	68	938
-25	65,205	22	5,710	69	906
-24	61,420	23	5,461	70	876
-23	57,875	24 25	5,225	71 72	836 805
-22 -21	54,555 51,450	25 26	5,000 4,786	72 73	775
-21 -20	48,536	26 27	4,780	73 74	773 747
-20 -19	45,807	28	4,389	75	719
-13 -18	43,247	29	4,204	76	693
-17	40,845	30	4,028	77	669
-16	38,592	31	3,861	78	645
-15	38.476	32	3,701	79	623
-14	34,489	33	3,549	80	602
-13	32,621	34	3,404	81	583
-12	30,866	35	3,266	82	564
-11	29,216	36	3,134	83	547
-10	27,633	37	3,008	84	531
-9	26,202	38	2,888	85	516
-8	24,827	39	2,773	86	502
-7	23,532	40	2,663	87	489
-6	22,313	41	2,559	88	477
-5	21,163	42	2,459	89	466
-4	20,079	43 44	2,363 2,272	90 91	456 446
−3 −2	19,058	44 45	2,272	91	446 436
-2 -1	18,094 17,184	45 46	2,104	93	436 427
0	16,325	47	2,021	94	419
1	15,515	48	1,944	95	410
2	14,749	49	1,871	96	402
3	14,026	50	1,801	97	393
4	13,342	51	1,734	98	385
5	12,696	52	1,670	99	376
6	12,085	53	1,609	100	367
7	11,506	54	1,550	101	357
8	10,959	55	1,493	102	346
9	10,441	56	1,439	103	335
10	9,949	57	1,387	104	324
11	9,485	58	1,337	105	312
12	9,044	59	1,290	106	299
13	8,627	60	1,244	107	285
14	8,231	61	1,200		

Table 53 — Pressure Transducers

TRANSDUCER ID	DESCRIPTION	PART NUMBER*	CONNECTION POINT	COMMENT
DPTA	Ckt. A Discharge Pressure Transducer	00PPG000030600A	MBB-J7A-CH6	_
SPTA	Ckt. A Suction Pressure Transducer	00PPG000030700A	MBB-J7B-CH7	_
DPTB	Ckt. B Discharge Pressure Transducer	00PPG000030600A	MBB-J7C-CH8	_
SPTB	Ckt. B Suction Pressure Transducer	00PPG000030700A	MBB-J7D-CH9	_
DPTC	Ckt. C Discharge Pressure Transducer	00PPG000030600A	FB3-J7-CH13	30RB210-300 Only
SPTC	Ckt. C Suction Pressure Transducer	00PPG000030700A	FB3-J8-CH14	30RB210-300 Only
PD.A	Ckt. A Pumpdown Pressure Transducer	00PPG000030600A	EMM HR-J8-CH6	Heat Reclaim Option Only
PD.B	Ckt. B Pumpdown Pressure Transducer	00PPG000030600A	EMM HR-J8-CH5	Heat Reclaim Option Only

*00PPG000030600A — High Pressure 00PPG000030700A — Low Pressure

Service Test — Main power and control circuit power must be on for Service Test.

The Service Test function is used to verify proper operation of various devices within the chiller, such as condenser fan(s), compressors, minimum load valve solenoid (if installed), cooler pump(s) and remote alarm relay. This is helpful during the start-up procedure to determine if devices are installed correctly. See Fig. 38-45 for 30RB wiring diagrams.

To use the Service Test mode, the Enable/Off/Remote Contact switch must be in the OFF position. Use the display keys to move to the Service Test mode. The items are described in the Service Test table. There are two sub-modes available. *Service Test*→*T.REQ* allows for manual control of the compressors and minimum load control. In this mode the compressors will operate only on command. The capacity control and head pressure control algorithms will be active. The condenser fans will operate along with the EXVs. There must be a load on the chiller of operate for an extended period of time. All circuit safeties will be honored during the test. Service Test \rightarrow QUIC allows for test of EXVs, condenser fans, pumps, low ambient head pressure control speed control, crankcase and cooler heaters, and status points (alarm relays, running status and chiller capacity). This mode allows for the testing of non-refrigeration items. If there are no keys pressed for 5 minutes, the active test mode will be disabled.

To enter the Manual Control mode, the Enable/Off/Remote Contact switch must be in the OFF position. Move the LED to the Service Test mode. Press ENTER to access **TEST**. Press ENTER to access T.REQ. Press ENTER and the display will show OFF. Press ENTER and OFF will flash. Enter the password if required. Use either arrow key to change the T.REQ value to ON and press ENTER. Manual Control mode is now active. Press the arrow keys to move to the appropriate item. To activate an item locate the item, press ENTER and the display will show OFF. Press ENTER and OFF will flash. Use either arrow key to change the value to ON and press ENTER. The item should be active. To turn the item off, locate the item, press ENTER and the display will show **ON**. The chiller must be enabled by turning the Enable/Off/ Remote Contact switch to Enable. Press ENTER and ON will flash. Use either arrow key to change the value to OFF and press ENTER. The item should be inactive.

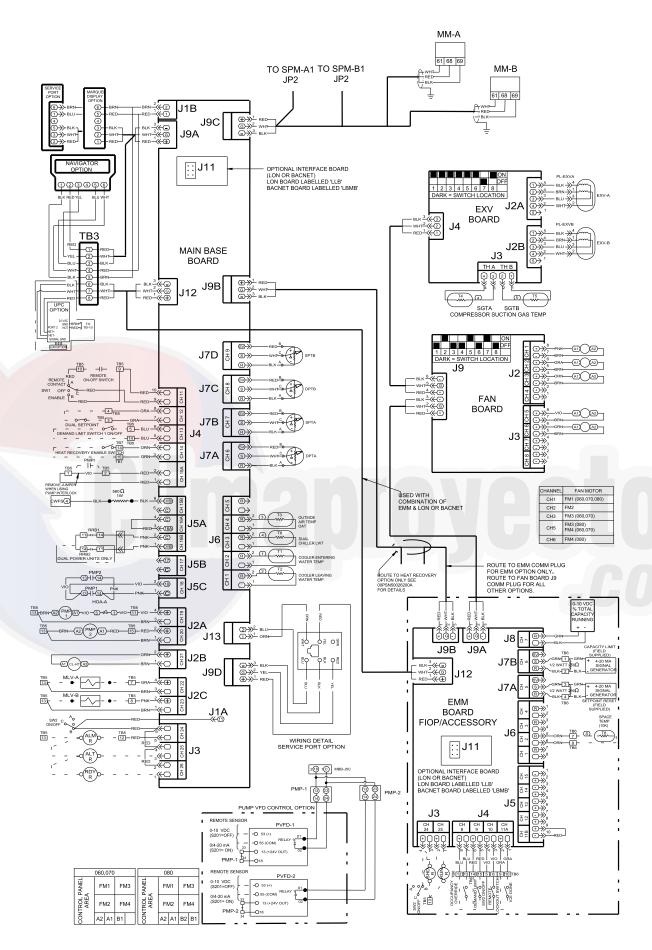
To enter the Quick Test mode, the Enable/Off/Remote Contact switch must be in the OFF position. Move the LED to the Service Test mode. Press ENTER to access *TEST*. Use the we key until the display reads QUIC. Press ENTER to access *Q.REQ*. Press ENTER and the display will show OFF. Press ENTER and OFF will flash. Enter the password if required. Use either arrow key to change the *QUIC* value to ON and press ENTER . Quick Test mode is now active. Follow the same instructions for the Manual Control mode to activate a component.

Example — Test the chilled water pump (see Table 54).

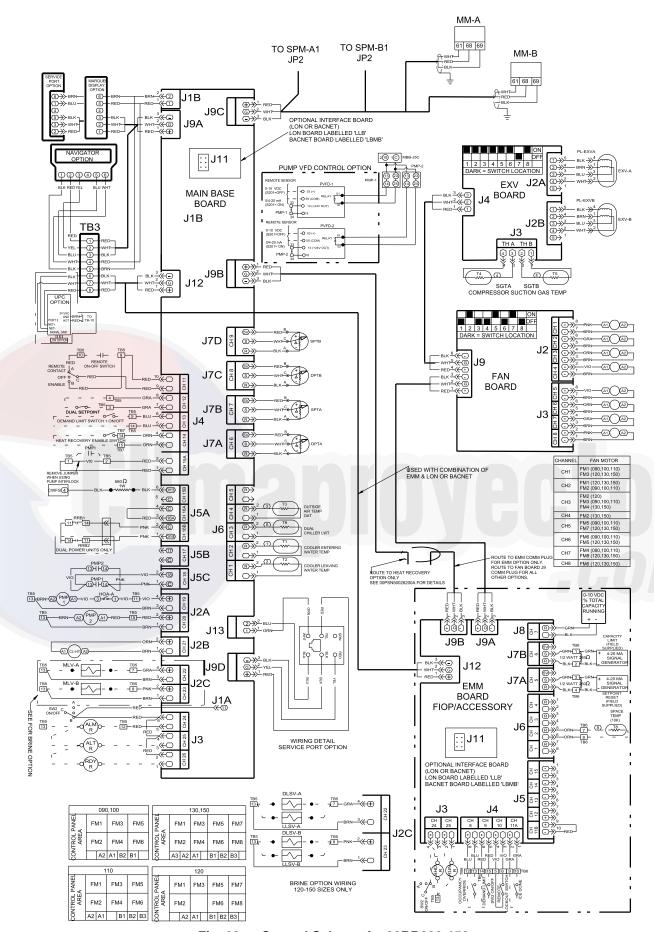
Power must be applied to the unit. Enable/Off/Remote Contact switch must be in the OFF position.

Test the condenser fans, cooler pump(s) and alarm relay by changing the item values from OFF to ON. These discrete outputs are then turned off if there is no keypad activity for 10 minutes. Test the compressor and minimum load valve solenoid (if installed) outputs in a similar manner. The minimum load valve solenoids will be turned off if there is no keypad activity for 10 minutes. Compressors will stay on until the operator turns them off. The Service Test mode will remain enabled for as long as there is one or more compressors running. All safeties are monitored during this test and will turn a compressor, circuit or the machine off if required. Any other mode or sub-mode can be accessed, viewed, or changed during the Manual Control mode only. The STAT item (Run *Status*→*VIEW*) will display "0" as long as the Service mode is enabled. The **TEST** sub-mode value must be changed back to OFF before the chiller can be switched to Enable or Remote contact for normal operation.

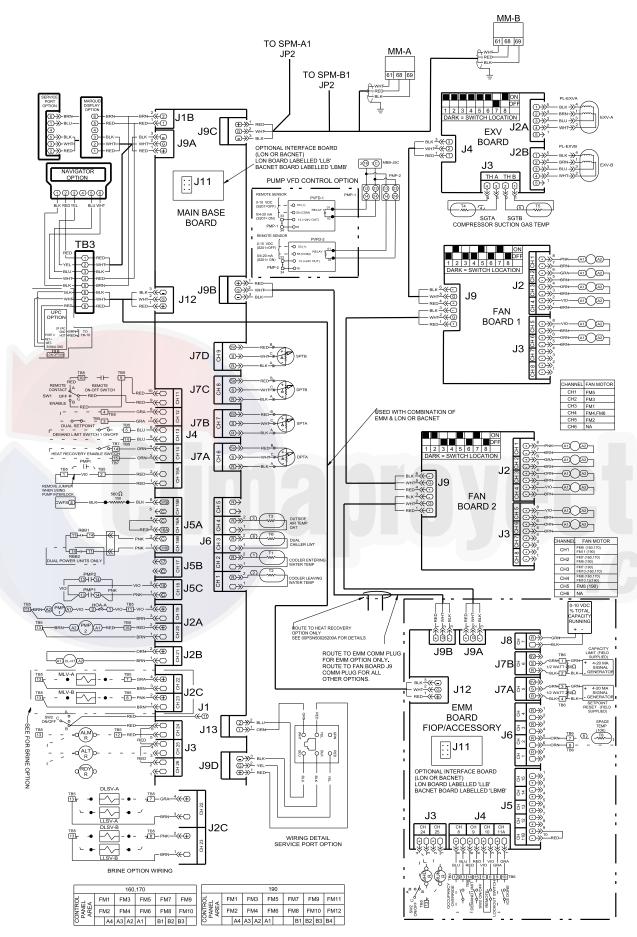
NOTE: There may be up to a one-minute delay before the selected item is energized.


Table 54 — Testing the Chilled Water Pump

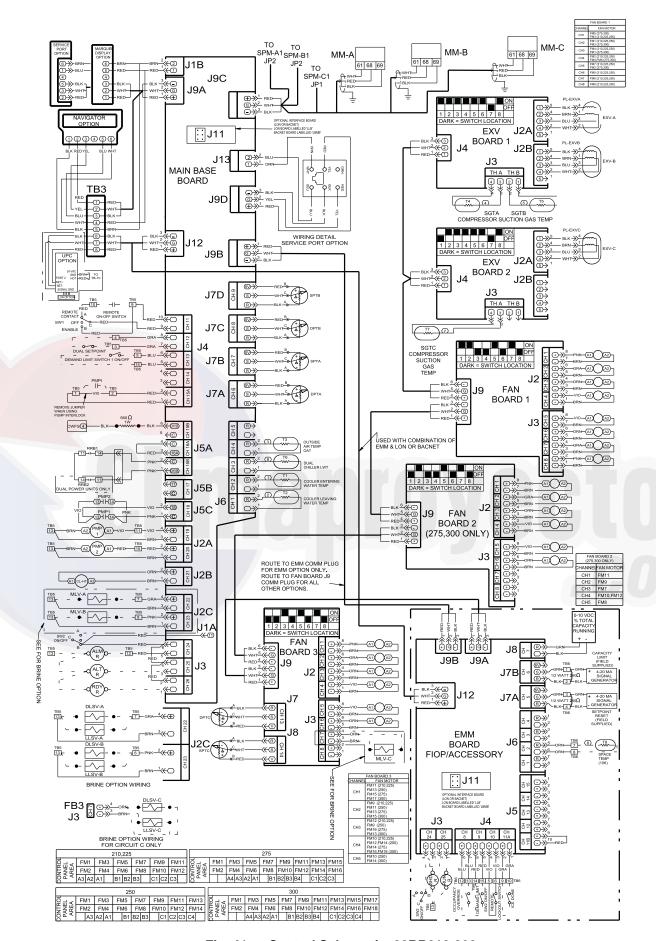
MODE (Red LED)	SUB-MODE	KEYPAD ENTRY	ITEM	DISPLAY EXPANSION	VALUE DESCRIPTION (Units)	COMMENT
SERVICE TEST		ENTER		Service Test Mode		
	TEST	+		Manual Sequence		
	QUIC	ENTER	Q.REQ			
			PASS WORD			Password may be required
		ENTER			0111	
		ENTER ENTER ENTER				Each ENTER will lock in the next digit. If 0111 is not the password, use the arrow keys to change the password digit and press ENTER when correct.
		ENTER	Q.REQ			Returns to the original field
		ENTER			OFF	
		ENTER			OFF	OFF will flash
		+			ON	The Enable/Off/Remote Contact switch must be in the OFF position.
		ESCAPE	Q.REQ			
		+	EXV.A			
		+	EXV.B			
		•	PMP.1	Water Exchanger Pump 1		
		ENTER			OFF	
		ENTER			OFF	OFF will flash
		+			ON	
		ENTER			ON	Pump 1 will turn on.
		ENTER			ON	ON will flash
		+			OFF	
		ENTER			OFF	Pump 1 will turn off.


LEGEND FOR FIG. 38-45

OAT PDP PMP PMPI Alarm RelayAlert Relay ALM R Outdoor Air Temperature ALT R Pumpdown Pressure Pump, Chilled Water Chilled Water Pump Interlock Circuit Breaker CB CD-HT Condenser Heater CL-HT CWFS DLSV PVFD Cooler Heater Pump Variable Frequency Drive Chilled Water Flow Switch Ready Relay Reverse Rotation Board **RDY R** Discharge Line Soleniod Valve RRB DPT ECA-A ECA-B Discharge Pressure Transducer RUN R Run Relay Entering Condenser Air-Cooled, Circuit A Entering Condenser Air-Cooled, Circuit B Entering Condenser Water-Cooled, Circuit A SGT Suction Gas Thermistor SHD R Shutdown Relay SPM SPT Scroll Protection Module ECW-A Entering Condenser Water-Cooled, Circuit B Energy Management Module ECW-B Suction Pressure Transducer **EMM** ΤВ Terminal Block TransformerUnitary Protocol Controller Entering Air-Cooled Entering Water-Cooled ENT A/C TRAN ENT W/C UPC Electronic Expansion Valve Factory-Installed Option **EXV FIOP Terminal Block Connection** Fan Motor FΜ FVFD Fan Motor Variable Frequency Drive Marked Terminal **HEVCF** High Efficiency Variable Condenser Fan Option HOA Hand/Off/Auto **Unmarked Terminal** Hand/Off/Auto, Auto Setting HOA-A HR Heat Reclaim **Unmarked Splice** LCA-A LCA-B LCW LCW-A Leaving Condenser Air-Cooled, Circuit A Leaving Condenser Air-Cooled, Circuit B **Factory Wiring** Leaving Condenser Air-Cooled, Circuit B
 Leaving Condenser Water
 Leaving Condenser Water-Cooled, Circuit A
 Leaving Condenser Water-Cooled, Circuit B
 Liquid Line Solenoid Valve
 Leaving Air-Cooled
 Leaving Water-Cooled
 Leaving Water Temperature
 Minimum Load Valve
 Low Ambient Temperature Head Pressure C **Optional Wiring** LCW-A LCW-B LLSV LVG A/C LVG W/C LWT MLV MM Indicates common potential. Does not represent wiring. FIOP or Accessory Low Ambient Temperature Head Pressure Control Wire Tag

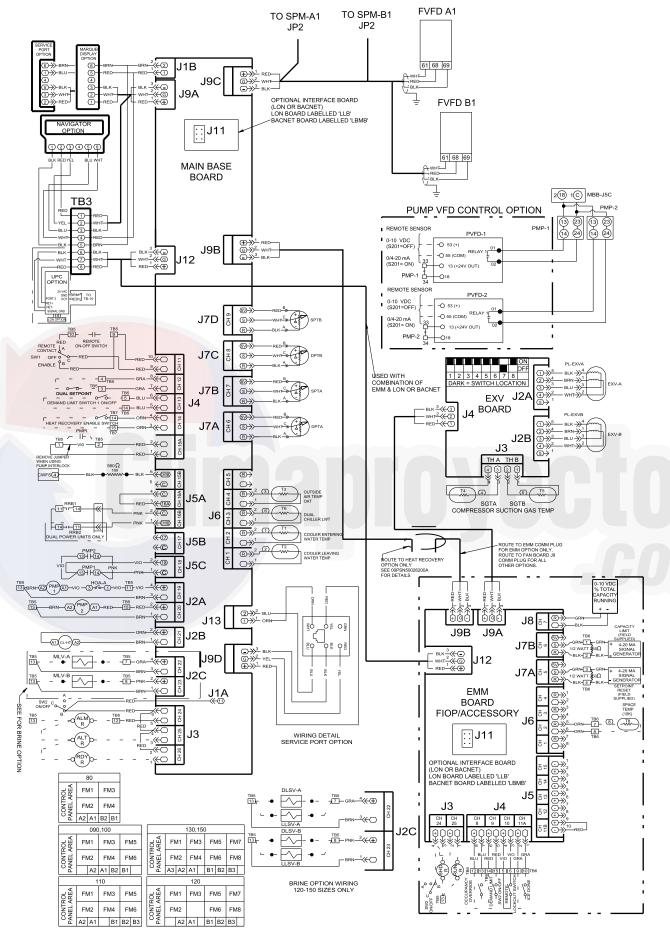


→ Fig. 38 — Control Schematic, 30RB060-080

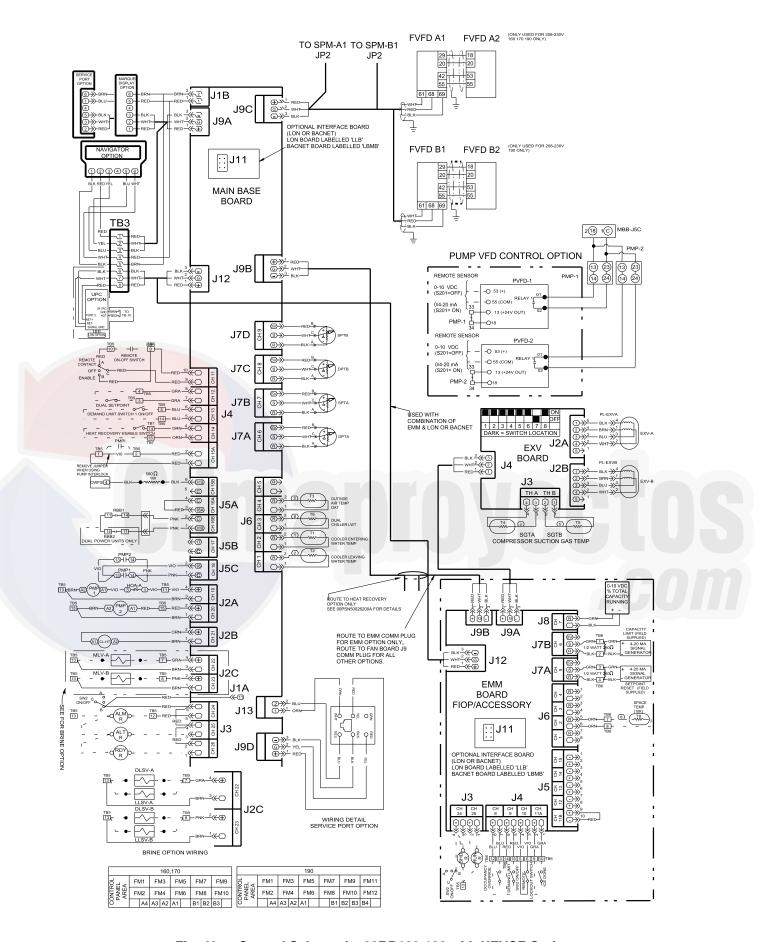


→ Fig. 39 — Control Schematic, 30RB090-150

87 415

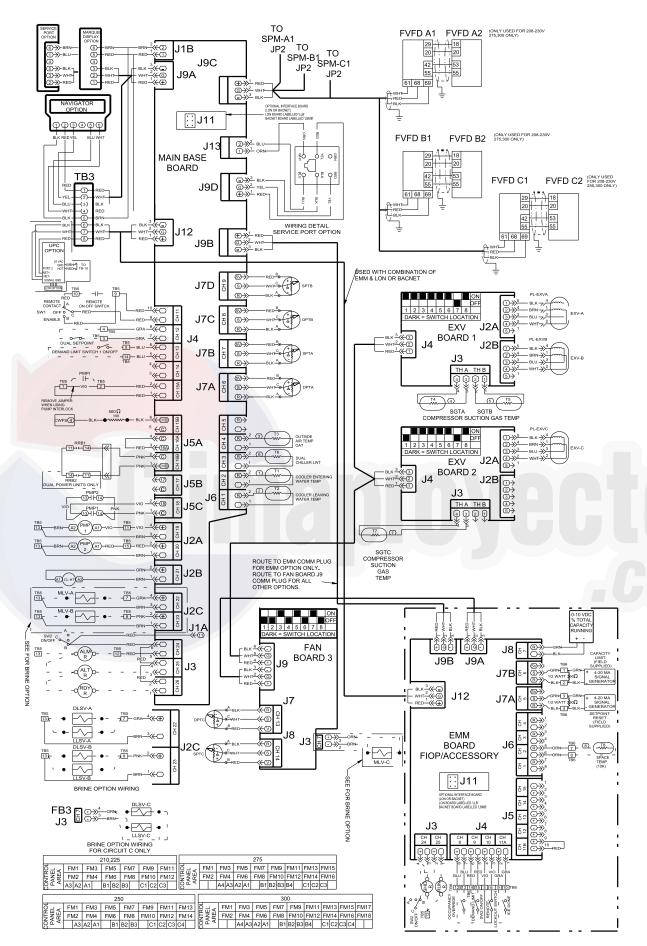


→ Fig. 40 — Control Schematic, 30RB160-190



→ Fig. 41 — Control Schematic, 30RB210-300

89



→ Fig. 42 — Control Schematic, 30RB080-150 with HEVCF Option

→ Fig. 43 — Control Schematic, 30RB160-190 with HEVCF Option

91 415

→ Fig. 44 — Control Schematic, 30RB210-300 with HEVCF Option

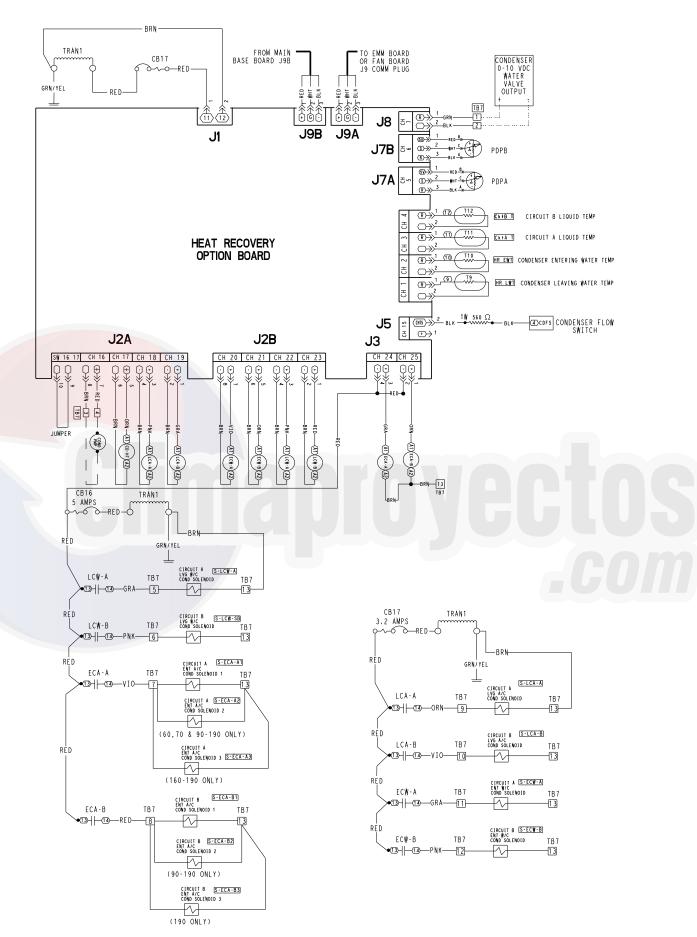


Fig. 45 — Heat Reclaim Control Schematic

MODE — RUN STATUS

ITEM	EXPANSION	UNITS	RANGE	COMMENT	WRITE STATUS	CCN TABLE	CCN POINT	PAGE NO.
VIEW →EWT	AUTO VIEW OF RUN STATUS Entering Fluid Temp	XXXX.X	0-100			STATEGEN	EWT	4,83 24
<i>→LWT</i>	Leaving Fluid Temp	(deg F/deg C) XXX.X	0-100			STATEGEN	LWT	24
<i>⇒SETP</i>	Active Setpoint	(deg F/deg C) XXX.X	0-100			GENUNIT	SP	47
\rightarrow CTPT	Control Point	(deg F/deg C) XXX.X	0-100			GENUNIT	CTRL_PNT	24,43,
→STAT	Unit Run Status	(deg F/deg C)	0=Off 1=Running 2=Stopping			GENUNIT	STATUS	47 30,31, 84
→OCC →CTRL	Occupied Status Unit Control Typ		3=Delay NO/YES 0=Local Off 1=Local On 2=CCN 3=Remote			GENUNIT GENUNIT	CHIL_OCC ctr_type	30 30
→CAP →CAP.S	Percent Total Capacity Capacity Indicator	XXX (%)	0-100			GENUNIT	CAP_T over_cap	24
→LIM →STGE	Active Demand Limit Val Current Stage	XXX (%)	0-100			GENUNIT	DEM_LIM	40
→ALRM	Alarm State	^^	0=Normal 1=Partial			GENUNIT	cur_stag ALM	
→HC.ST	Heat Cool Status		2=Shutdown 0=Cooling 1=Heating			GENUNIT	HEATCOOL	24
→RC.ST →TIME →MNTH	Reclaim Select Status Time of Day Month of Year	xx.xx	2=Standby NO/YES 00.00-23.59 1=January 2=February 3=March 4-April 5=May 6=June 7=July 8=August 9=September 10=October			GENUNIT N/A N/A	reclaim_sel TIME moy	
			11=November 12=December					
→DATE →YEAR	Day of Month Year of Century	XX	1-31 00-99			N/A N/A	dom	
R.CCN →CH.SS →HC.SL	CCN FOR PRODIALOG CCN Chiller Start Stop Heat Cool Select		ENBL/DSBL 0=Cool 1=Heat 2=Auto		forcible forcible	GENUNIT GENUNIT	CHIL_S_S HC_SEL	75
→C.OCC →RECL	Chiller Occupied Reclaim Select		NO/YES NO/YES		forcible forcible	GENUNIT GENUNIT	CHIL_OCC RECL SEL	
→SP.OC →D.LIM	Setpoint Occupied Active Demand Limit Val	XXX (%)	NO/YES 0-100		forcible forcible	GENUNIT GENUNIT	SP_OCC DEM LIM	
→CTRL	Control Point	XXX.X	0-100		forcible	GENUNIT	CTRL_PNT	
→ EMGY	Emergency Stop	(deg F/deg C)	ENBL/DSBL		forcible	GENUNIT	EMSTOP	
RUN →HRS.U →STR.U →HR.P1 →HR.P2 →HR.CD	UNIT RUN HOUR AND START Machine Operating Hours Machine Starts Water Pump 1 Run Hours Water Pump 2 Run Hours Heat Reclaim Pump Hours	XXXX (hours) XXXX XXXX (hours) XXXX (hours) XXXX (hours)	0-999000* 0-9999 0-999000* 0-999000*		forcible forcible forcible forcible forcible	STRTHOUR FANHOURS FANHOURS FANHOURS	hr_mach st_mach hr_cpum1 hr_cpum2 hr hpump	49
HOUR →HR.A1 →HR.A3 →HR.A3 →HR.B1 →HR.B3 →HR.B3 →HR.B4 →HR.C1 →HR.C2 →HR.C3 →HR.C3 →HR.C3	COMPRESSOR RUN HOURS Compressor A1 Run Hours Compressor A2 Run Hours Compressor A3 Run Hours Compressor A4 Run Hours Compressor B1 Run Hours Compressor B2 Run Hours Compressor B3 Run Hours Compressor B4 Run Hours Compressor C1 Run Hours Compressor C2 Run Hours Compressor C2 Run Hours Compressor C3 Run Hours Compressor C4 Run Hours Compressor C4 Run Hours	XXXX (hours)	0-999000* 0-999000* 0-999000* 0-999000* 0-999000* 0-999000* 0-999000* 0-999000* 0-999000* 0-999000* 0-999000*		forcible forcible forcible forcible forcible forcible forcible forcible forcible forcible forcible forcible forcible	STRTHOUR STRTHOUR STRTHOUR STRTHOUR STRTHOUR STRTHOUR STRTHOUR STRTHOUR STRTHOUR STRTHOUR STRTHOUR STRTHOUR STRTHOUR	hr_cp_a1 hr_cp_a2 hr_cp_a3 hr_cp_a4 hr_cp_b1 hr_cp_b2 hr_cp_b3 hr_cp_b4 hr_cp_c1 hr_cp_c2 hr_cp_c2 hr_cp_c3 hr_cp_c4	
STRT →ST.A1 →ST.A2 →ST.A3 →ST.A4 →ST.B1 →ST.B2 →ST.B3 →ST.B4 →ST.C1 →ST.C2 →ST.C3 →ST.C4	COMPRESSOR STARTS Compressor A1 Starts Compressor A2 Starts Compressor A3 Starts Compressor B1 Starts Compressor B1 Starts Compressor B2 Starts Compressor B3 Starts Compressor B4 Starts Compressor C1 Starts Compressor C2 Starts Compressor C2 Starts Compressor C3 Starts Compressor C4 Starts Compressor C4 Starts	XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX	0-999000* 0-999000* 0-999000* 0-999000* 0-999000* 0-999000* 0-999000* 0-999000* 0-999000* 0-999000*		forcible forcible forcible forcible forcible forcible forcible forcible forcible forcible forcible forcible	STRTHOUR STRTHOUR STRTHOUR STRTHOUR STRTHOUR STRTHOUR STRTHOUR STRTHOUR STRTHOUR STRTHOUR STRTHOUR STRTHOUR STRTHOUR	st_cp_a1 st_cp_a2 st_cp_a3 st_cp_a4 st_cp_b1 st_cp_b2 st_cp_b3 st_cp_b4 st_cp_c1 st_cp_c2 st_cp_c2 st_cp_c3 st_cp_c4	

MODE — RUN STATUS (cont)

ITEM	EXPANSION	UNITS	RANGE	COMMENT	WRITE STATUS	CCN TABLE	CCN POINT	PAGE NO.
FAN →FR.A1	FAN RUN HOURS Fan 1 Run Hours Cir A	XXXX (hours)	0-999000*		forcible	FANHOURS	hr fana1	1
→FR.A2	Fan 2 Run Hours Cir A	XXXX (hours)	0-999000*		forcible	FANHOURS	hr fana2	
→FR.A3	Fan 3 Run Hours Cir A	XXXX (hours)	0-999000*		forcible	FANHOURS	hr_fana3	
→FR.A4	Fan 4 Run Hours Cir A	XXXX (hours)	0-999000*		forcible	FANHOURS	hr_fana4	
→FR.A5	Fan 5 Run Hours Cir A	XXXX (hours)	0-999000*		forcible	FANHOURS	hr_fana5	
→FR.A6	Fan 6 Run Hours Cir A	XXXX (hours)	0-999000*		forcible	FANHOURS	hr_fana6	
→FR.B1	Fan 1 Run Hours Cir B	XXXX (hours)	0-999000*		forcible	FANHOURS	hr_fanb1	
→FR.B2	Fan 2 Run Hours Cir B	XXXX (hours)	0-999000*		forcible	FANHOURS	hr_fanb2	
→FR.B3	Fan 3 Run Hours Cir B Fan 4 Run Hours Cir B	XXXX (hours) XXXX (hours)	0-999000* 0-999000*		forcible forcible	FANHOURS FANHOURS	hr_fanb3 hr_fanb4	
→FR.B4 →FR.B5	Fan 5 Run Hours Cir B	XXXX (hours)	0-999000*		forcible	FANHOURS	hr fanb5	
→rn.bə →FR.B6	Fan 6 Run Hours Cir B	XXXX (hours)	0-999000*		forcible	FANHOURS	hr fanb6	
→FR.C1	Fan 1 Run Hours Cir C	XXXX (hours)	0-999000*		forcible	FANHOURS	hr fanc1	
→FR.C2	Fan 2 Run Hours Cir C	XXXX (hours)	0-999000*		forcible	FANHOURS	hr fanc2	
→FR.C3	Fan 3 Run Hours Cir C	XXXX (hours)	0-999000*		forcible	FANHOURS	hr fanc3	
→FR.C4	Fan 4 Run Hours Cir C	XXXX (hours)	0-999000*		forcible	FANHOURS	hr fanc4	
→FR.C5	Fan 5 Run Hours Cir C	XXXX (hours)	0-999000*		forcible	FANHOURS	hr_fanc5	1
→FR.C6	Fan 6 Run Hours Cir C	XXXX (hours)	0-999000*		forcible	FANHOURS	hr fanc6	1
CP.UN	COMPRESSOR DISABLE	<u> </u>			1			
→A1.UN	Compressor A1 Disable		NO/YES		forcible	CP_UNABL	un_cp_a1	
→A2.UN	Compressor A2 Disable		NO/YES		forcible	CP UNABL	un cp a2	1
→A3.UN	Compressor A3 Disable		NO/YES		forcible	CP UNABL	un cp a3	1
→A4.UN	Compressor A4 Disable		NO/YES		forcible	CP_UNABL	un_cp_a4	1
→B1.UN	Compressor B1 Disable		NO/YES		forcible	CP_UNABL	un cp b1	1
→B2.UN	Compressor B2 Disable		NO/YES		forcible	CP_UNABL	un_cp_b2	1
→B3.UN	Compressor B3 Disable		NO/YES		forcible	CP_UNABL	un_cp_b3	1
→B4.UN	Compressor B4 Disable		NO/YES		forcible	CP_UNABL	un_cp_b4	1
→C1.UN	Compressor C1 Disable		NO/YES		forcible	CP_UNABL	un_cp_c1	1
→C2.UN	Compressor C2 Disable		NO/YES		forcible	CP_UNABL	un_cp_c2	1
→C3.UN	Compressor C3 Disable		NO/YES		forcible	CP_UNABL	un_cp_c3	
→C4.UN	Compressor C4 Disable		NO/YES		forcible	CP_UNABL	un_cp_c4	
MAIN	PREDICTIVE MAINTENANCE						1.	
→ CHRG	Refrigerant Charge		NO/YES			SERMAINT	charge_m	1
→WATE	Water Loop Size		NO/YES			SERMAINT	wloop_m	1
→PMP.1	Pump 1 (days)	(days)				SERMAINT	cpump1_m	1
→PMP.2 →PMP.C	Pump 2 (days) Cond Pump (days)	(days)				SERMAINT SERMAINT	cpump2_m	1
→ PWF.C → W.FIL	Water Filter (days)	(days) (days)				SERMAINT	hpump_m wfilte_m	1
		(uays)		D FNITED		OLITIVIATIVI	wille_iii	_
VERS	SOFTWARE VERSION NUMBER			Press ENTER and ESCAPE				
→APPL	CSA-XX-XXXXXXXX			simultaneously			PD5 APPL	
→MARQ	XXXXXX-XX-XX			to read version			STDU	
→NAVI	XXXXXX-XX-XX			information			Navigator	
→EXV1	XXXXXX-XX-XX						Navigator EXV_BRD1	
→EXV2	XXXXXX-XX-XX						EXV ^{BRD2}	
→AUX1	XXXXXX-XX-XX						AUX_BRD1	
→AUX2	XXXXXX-XX-XX						AUX_BRD2	
→AUX3	XXXXXX-XX-XX						AUX_BRD3 AUX_BRD4	
→AUX4	XXXXXX-XX-XX						AUX_BRD4	
→AUX5	XXXXXX-XX-XX						AUX_BRD5	
→CPA1	XXXXXX-XX-XX						SPM_CPA1	
→CPA2	XXXXXX-XX-XX		1				SPM_CPA2	
→CPA3 →CPA4	XXXXXX-XX-XX		1	1			SPM_CPA3 SPM_CPA4	
→CPA4 →CPB1	XXXXXX-XX-XX XXXXXX-XX-XX		1	1			SPM_CPA4	
→CPB1 →CPB2	XXXXXX-XX-XX		1				SPM CPB2	
→CPB3	XXXXXX-XX-XX		1	1			SPM CPB3	
→CPB3 →CPB4	XXXXXX-XX-XX		1				SPM CPB4	
→CPC1	XXXXXX-XX-XX		1	1			SPM CPC1	
→CPC2	XXXXXX-XX-XX		1				SPM CPC2	
→CPC3	XXXXXX-XX-XX		1				SPM_CPC3	
→CPC4	XXXXXX-XX-XX		1				SPM_CPC4	
\rightarrow EMM	XXXXXX-XX-XX		1				EMM_NRCP	I

^{*}As data in all of these categories can exceed 9999 the following display strategy is used: From 0-9999 display as 4 digits. From 9999-99900 display xx.xK From 99900-999000 display as xxxK.

MODE — **SERVICE TEST**

ITEM	EXPANSION	UNITS	RANGE	COMMENT	WRITE STATUS	CCN TABLE	CCN POINT	PAGE NO.
TEST →T.REQ	COMPRESSORS Manual Seguence		OFF/ON*		forcible	N/A N/A	convice test	54,83
→ CP.A1	Manual Sequence Compressor A1 Output		OFF/ON		forcible	N/A N/A	service_test comp_serv_a_1	54,63
→CP.A2	Compressor A2 Output		OFF/ON		forcible	N/A	comp_serv_a_2	54
→CP.A3	Compressor A3 Output		OFF/ON		forcible	N/A	comp_serv_a_3	54
→CP.A4	Compressor A4 Output		OFF/ON		forcible	N/A	comp_serv_a_4	54
→HGB.A →CP.B1	Hot Gas Bypass A Output Compressor B1 Output		OFF/ON OFF/ON		forcible forcible	N/A N/A	hgbp_serv_a comp_serv_b_1	54
→CP.B2	Compressor B2 Output		OFF/ON		forcible	N/A	comp_serv_b_1	54
→CP.B3	Compressor B3 Output		OFF/ON		forcible	N/A	comp_serv_b_3	54
→CP.B4	Compressor B4 Output		OFF/ON		forcible	N/A	comp_serv_b_4	54
→HGB.B →CP.C1	Hot Gas Bypass B Output Compressor C1 Output		OFF/ON OFF/ON		forcible forcible	N/A N/A	hgbp_serv_b	54
→CP.C1 →CP.C2	Compressor C2 Output		OFF/ON		forcible	N/A N/A	comp_serv_c_1	54
→CP.C3	Compressor C3 Output		OFF/ON		forcible	N/A	comp_serv_c_3	54
→CP.C4	Compressor C4 Output		OFF/ON		forcible	N/A	comp_serv_c_4	54
→HGB.C	Hot Gas Bypass C Output		OFF/ON		forcible	N/A	hgbp_serv_c	
QUIC	QUICK TEST MODE		OFF/ON+		f!b.l -	N/A		54,83
→Q.REQ →EXV.A	Quick Test Mode Circuit A EXV % Open	XXX (%)	OFF/ON† 0-100		forcible forcible	N/A N/A	test_request exv_qck_a	53
→EXV.B	Circuit B EXV % Open	XXX (%)	0-100		forcible	N/A	exv_qck_b	53
→EXV.C	Circuit C EXV % Open	XXX (%)	0-100		forcible	N/A	exv_qck_c	53
→FAN.A	Circuit A Fan Stages	Χ ` ΄	0-6		forcible	N/A	fan_qck_a	
→FAN.B →FAN.C	Circuit B Fan Stages Circuit C Fan Stages	X	0-6 0-6		forcible forcible	N/A N/A	fan_qck_b fan_qck_c	
⇒FAN.C ⇒SPD.A	Circ A Varifan position	XXX (%)	0-100		forcible	N/A N/A	hd_qck_c hd_qck_a	
\rightarrow SPD.B	Circ B Varifan position	XXX (%)	0-100		forcible	N/A	hd_qck_b	
→SPD.C	Circ C Varifan position	XXX (%)	0-100		forcible	N/A	hd_qck_c	
→FRV.A	Free Cooling Valve A Refrigerant Pump Out A		OPEN/CLSE	Not supported.	forcible	N/A	fr_qck_1a	
→FRP.A →FRV.B	Free Cooling Valve B		OFF/ON OPEN/CLSE	Not supported.	forcible forcible	N/A N/A	fr_qck_2a fr_qck_1b	
→FRP.B	Refrigerant Pump Out B		OFF/ON	Not supported.	forcible	N/A	fr_qck_1b	
→FRV.C	Free Cooling Valve C		OPEN/CLSE	Not supported.	forcible	N/A	fr_qck_1c	
→FRP.C	Refrigerant Pump Out C		OFF/ON	Not supported.	forcible	N/A	fr_qck_2c	
→RV.A →RV.B	4 Way Valve Circuit A 4 Way Valve Circuit B		OPEN/CLSE OPEN/CLSE	Not supported.	forcible forcible	N/A N/A	rv_qck_a	
→RV.B →BOIL	Boiler Command		OFF/ON	Not supported.	forcible	N/A	rv_qck_b boiler_qck	
	Air Cond Enter Valve A		OPEN/CLSE	. tot oupportou.	forcible	N/A	hr_ea_qck_a	
→HR2.A	Air Cond Leaving Valv A		OPEN/CLSE		forcible	N/A	hr_la_qck_a	
→HR3.A →HR4.A	Water Cond Enter Valv A Water Cond Leav Valve A		OPEN/CLSE OPEN/CLSE		forcible forcible	N/A N/A	hr_ew_qck_a hr_lw_qck_a	
→HR1.B	Air Cond Enter Valve B		OPEN/CLSE		forcible	N/A N/A	hr_ea_qck_b	
→HR2.B	Air Cond Leaving Valv B		OPEN/CLSE		forcible	N/A	hr_la_qck_b	
→HR3.B	Water Cond Enter Valv B		OPEN/CLSE		forcible	N/A	hr_ew_qck_b	
→HR4.B →PMP.1	Water Cond Leav Valve B Water Exchanger Pump 1		OPEN/CLSE OFF/ON		forcible forcible	N/A N/A	hr_lw_qck_b	
→PMP.1 →PMP.2	Water Exchanger Pump 2		OFF/ON		forcible	N/A N/A	cpump_qck1 cpump_qck2	
→CND.P	Reclaim Condenser Pump		OFF/ON		forcible	N/A	cond_pump_qck	
→CL.HT	Cooler Heater Output		OFF/ON		forcible	N/A	coo_heat_qck	
→CP.HT	Condenser Heater Output		OFF/ON		forcible	N/A	cond_htr_qck	
→CH.A1 →CH.A2	Compressor A1 Heater Compressor A2 Heater		OFF/ON OFF/ON		forcible forcible	N/A N/A	cp_ht_qck_a1 cp_ht_qck_a2	
→CH.A3	Compressor A3 Heater		OFF/ON		forcible	N/A	cp_ht_qck_a3	
→CH.A4	Compressor A4 Heater		OFF/ON		forcible	N/A	cp_ht_qck_a4	
→CH.B1	Compressor B1 Heater		OFF/ON		forcible	N/A	cp_ht_qck_b1	
→CH.B2 →CH.B3	Compressor B2 Heater Compressor B3 Heater		OFF/ON OFF/ON		forcible forcible	N/A N/A	cp_ht_qck_b2 cp_ht_qck_b3	
→CH.B4	Compressor B4 Heater		OFF/ON		forcible	N/A	cp_ht_qck_b4	
→CH.C1	Compressor C1 Heater		OFF/ON		forcible	N/A	cp_ht_qck_c1	
→CH.C2	Compressor C2 Heater		OFF/ON		forcible	N/A	cp_ht_qck_c2	
→CH.C3 →CH.C4	Compressor C3 Heater Compressor C4 Heater		OFF/ON OFF/ON		forcible forcible	N/A N/A	cp_ht_qck_c3 cp_ht_qck_c4	
→CH.C4 →HGB.A	Hot Gas Bypass A Output		OFF/ON		forcible	N/A	OP_III_QUIL_U4	
→HGB.B	Hot Gas Bypass B Output		OFF/ON OFF/ON		forcible	N/A		
→HGB.C	Hot Gas Bypass C Output		OFF/ON		forcible	N/A	l	
→Q.RDY → Q.RUN	Chiller Ready Status		OFF/ON OFF/ON	EMM	forcible	N/A	ready_qck	
→Q.RUN →SHUT	Chiller Running Status Customer Shutdown Stat		OFF/ON OFF/ON	EMM	forcible forcible	N/A N/A	running_qck shutdown_qck	
→CATO	Chiller Capacity 0-10v	XX.X (vdc)	0-100	EMM	forcible	N/A	CAPT 010 gcK	
\rightarrow ALRM	Alarm Relay	,	OFF/ON OFF/ON		forcible	N/A	alarm_qck	
→ALRT	Alert Relay		OFF/ON	Not ounett	forcible	N/A	alert_qck	
→C.ALM	Critical Alarm Relay		OFF/ON	Not supported.	forcible	N/A	critical_qck	

^{*}Place the Enable/Off/Remote Contact switch to the Off position prior to configuring *T.REQ* to ON. Configure the desired item to ON, then place the Enable/Off/Remote Contact switch to the Enable position.
†Place the Enable/Off/Remote Contact switch to the Off position prior to configuring *Q.REQ* to ON. The switch should be in the Off position to perform Quick Test.

MODE — TEMPERATURE

ITEM	EXPANSION	UNITS	RANGE	COMMENT	WRITE STATUS	CCN TABLE	CCN POINT	PAGE NO.
UNIT	ENT AND LEAVE UNIT TEMP							
<i>→EWT</i>	Water Exchanger Enter	XXX.X	-45-245 F			STATEGEN	EWT	7,47
<i>→LWT</i>	Water Exchanger Leaving	(deg F/deg C) XXX X (deg F/deg C)	(-43-118 C) -45-245 F (-43-118 C)			STATEGEN	LWT	7,47
\rightarrow OAT	Outside Air Temperature	XXX.X (deg F/deg C)	-45-245 F (-43-118 C)			GENUNIT	OAT	7,47
\rightarrow CHWS	Lead/Lag Leaving Fluid	XXX.X (deg F/deg C)	-45-245 F (-43-118 C)			STATEGEN	CHWS TEMP	7
\rightarrow HEWT	Heat Reclaim Entering	XXX.X (deg F/deg C)	(40 110 0)			RECLAIM	HR_EWT	17,49
\rightarrow HLWT	Heat Reclaim Leaving	XXX.X (deg F/deg C)				RECLAIM	HR_LWT	17,49
→SPT	Optional Space Temp	XXX.X (deg F/deg C)	-45-245 F (-43-118 C)			STATEGEN	SPACETMP	16
CIR.A →SCT.A	TEMPERATURES CIRCUIT A Sat Cond Temp Circ A	XXX.X	-45-245 F			CIRCA_AN	SCT_A	
<i>⇒SST.A</i>	Sat Suction Temp Circ A	(deg F/deg C) XXX X (deg F/deg C)	(-43-118 C) -45-245 F (-43-118 C)			CIRCA_AN	SST_A	
ightarrowSGT.A	Suction Gas Temp Circ A	XXX.X (deg F/deg C)	-45-245 F (-43-118 C)			CIRCA_AN	SUCT_T_A	9
→SUP.A →HRT.A	Superheat Temp Circ A Sub Condenser Gas Tmp A	XXX.X (ΔF/ΔC) XXX.X (deg F/deg C)	-45-245 F (-43-118 C)			CIRCA_AN RECLAIM	SH_A hr_subta	17
→HRS.A	Sub Cooling Temp A	XXX.X (\(\Delta F / \Delta C \)	(40 110 0)			RECLAIM	hr_subca	17,49
CIR.B	TEMPERATURES CIRCUIT B							
→SCT.B	Sat Cond Temp Circ B	XXX.X	-45-245 F			CIRCB_AN	SCT_B	
→SST.B	Sat Suction Temp Circ B	(deg F/deg C) XXX.X (deg F/deg C)	(-43-118 C) -45-245 F (-43-118 C)			CIRCB_AN	SST_B	
→SGT.B	Suction Gas Temp Circ B	XXX.X (deg F/deg C)	(-43-118 C) -45-245 F (-43-118 C)			CIRCB_AN	SUCT_T_B	9
→SUP.B →HRT.B	Superheat Temp Circ B Sub Condenser Gas Tmp B	XXX.X (ΔF/ΔC) XXX.X (deg F/deg C)	-45-245 F (-43-118 C)			CIRCB_AN RECLAIM	SH_B hr_subtb	17
→HRS.B	Sub Cooling Temp B	XXX.X ($\Delta F/\Delta C$)	(.5 ,			RECLAIM	hr_subcb	17,49
CIR.C →SCT.C	TEMPERATURES CIRCUIT C Sat Cond Temp Circ C	XXX.X	-45-245 F			CIRCC_AN CIRCC_AN	SCT_C	
→SST.C	Sat Suction Temp Circ C	(deg F/deg C) XXX.X (deg F/deg C)	(-43-118 C) -45-245 F (-43-118 C)			CIRCC_AN	SST_C	
→SGT.C	Suction Gas Temp Circ C	XXX.X (deg F/deg C)	(-43-118 C) -45-245 F (-43-118 C)			CIRCC_AN	SUCT_T_C	11
→SUP.C	Superheat Temp Circ C	XXX.X (\(\Delta F/\Delta C\)	(.55 6)			CIRCC_AN	SH_C	

MODE — PRESSURE

ITEM	EXPANSION	UNITS	RANGE	COMMENT	WRITE STATUS	CCN TABLE	CCN POINT	PAGE NO.
PRC.A →DP.A	PRESSURE CIRCUIT A Discharge Pressure Cir A	XXX.X (psig/kPa)				CIRCA_AN	DP_A	7,48
→SP.A	Suction Pressure Circ A	XXX.X (psig/kPa)				CIRCA_AN	SP_A	7
→PD.A	Pumpdown Pressure Cir A	XXX.X (psig/kPa)				RECLAIM	PD_P_A	17
PRC.B →DP.B	PRESSURE CIRCUIT B Discharge Pressure Cir B	XXX.X				CIRCB_AN	DP_B	7,48
ightarrowSP.B	Suction Pressure Circ B	(psig/kPa) XXX.X (psig/kPa)				CIRCB_AN	SP_B	7
→PD.B	Pumpdown Pressure Cir B	XXX.X (psig/kPa)				RECLAIM	PD_P_B	17
PRC.C →DP.C	PRESSURE CIRCUIT C Discharge Pressure Cir C	XXX.X (psig/kPa)				CIRCC_AN	DP_C	14,48
→SP.C	Suction Pressure Circ C	XXX.X (psig/kPa)				CIRCC_AN	SP_C	14
→ PD.C	Pumpdown Pressure Cir C	(psig/kPa) (psig/kPa)				RECLAIM	PD_P_C	

MODE — SET POINTS

ITEM	EXPANSION	UNITS	RANGE	COMMENT	WRITE STATUS	CCN TABLE	CCN POINT	PAGE NO.
COOL →CSP.1	COOLING SETPOINTS Cooling Setpoint 1	XXXX.X (deg F/deg C)	-20-70 F (-29-21 C),		forcible	SETPOINT	csp1	31,32, 43
→CSP.2	Cooing Setpoint 2	XXXX.X (deg F/deg C)	Default = 44.0 -20-70 F (-29-21 C),		forcible	SETPOINT	csp2	31,32
→CSP.3	Ice Setpoint	XXXX.X (deg F/deg C)	Default = 44.0 -20-70 F (-29-21 C),		forcible	SETPOINT	ice_sp	31,47
→CRV1	Current No Reset Val	XX.X (mA)	Default = 44.0 0-20, Default = 0		forcible	SETPOINT	v_cr_no	37
→CRV2	Current Full Reset Val	XX.X (mA)	0-20, Default = 0		forcible	SETPOINT	v_cr_fu	37
→CRT1	Delta T No Reset Temp	XXX.X (ΔF/ΔC)	0-125 F (0-69.4 C).		forcible	SETPOINT	dt_cr_no	32
→CRT2	Delta T Full Reset Temp	XXX.X (ΔF/ΔC)	Default = 0 0-125 F (0-69.4 C),		forcible	SETPOINT	dt_cr_fu	32
→CRO1	OAT No Reset Temp	XXX.X (deg F/deg C)	Default = 0 0-125 F (-18-52 C),		forcible	SETPOINT	oatcr_no	32
→CRO2	OAT Full Reset Temp	XXX.X (deg F/deg C)	Default = 14.0 0-25 F (-18-52 C),		forcible	SETPOINT	oatcr_fu	32
→CRS1	Space T No Reset Temp	XXX.X (deg F/deg C)	Default = 14.0 0-125 F (-18-52 C), Default = 14.0		forcible	SETPOINT	spacr_no	37
→CRS2	Space T Full Reset Temp	XXX.X (deg F/deg C)	0-125 F (-18-52 C), Default = 14.0		forcible	SETPOINT	spacr_fu	37
→DGRC	Degrees Cool Reset	XX.X (ΔF/ΔC)	-30-30 F (-16.7-16.7 C), Default = 0		forcible	SETPOINT	cr_deg	32,37
→CAUT	Cool Changeover Setpt	XX.X (deg F/deg C)	Default = 75.0	Not supported.	forcible	SETPOINT	cauto_sp	
→CRMP	Cool Ramp Loading	X.X	0.2-2.0 F (0.1-1.1 C), Default = 1.0		forcible		cramp_sp	18,24
HEAT	HEATING SETPOINTS		Delauit = 1.0					
→HSP.1	Heating Setpoint 1	XXX.X (deg F/deg C)	Default = 100	Not supported.	forcible	SETPOINT	HSP.1	
→HSP.2	Heating Setpoint 2	XXX.X (deg F/deg C)	Default = 100	Not supported.	forcible	SETPOINT	HSP.2	
→HRV1	Current No Reset Val	XX.X (mA)	Default = 0	Not supported.	forcible	SETPOINT	v_hr_no	
→HRV2 →HRT1	Current Full Reset Val Delta T No Reset Temp	XX.X (mA) XXX.X (ΔF/ΔC)	Default = 0 Default = 0	Not supported. Not supported.	forcible forcible	SETPOINT SETPOINT	v_hr_fu dt_hr_no	
→HRT2	Delta T Full Reset Temp	XXX.X (\Delta F/\Delta C)	Default = 0	Not supported.	forcible	SETPOINT	dt_hr_fu	
→HRO1	OAT No Reset Temp	(deg F/deg C)	Default = 14.0	Not supported.	forcible	SETPOINT	oathr_no	
→HRO2	OAT Full Reset Temp	XXX.X (deg F/deg C)	Default = 14.0	Not supported.	forcible	SETPOINT	oathr_fu	
→DGRH →HAUT	Degrees Heat Reset Heat Changeover Setpt	XX.X (ΔF/ΔC) XX.X (deg F/deg C)	Default = 0 Default = 64	Not supported. Not supported.	forcible forcible	SETPOINT SETPOINT	DGRH hauto_sp	
→ HRMP	Heat Ramp Loading	X.X	Default = 1.0	Not supported.	forcible	SETPOINT	hramp_sp	
MISC →DLS1	MISCELLANEOUS SETPOINTS Switch Limit Setpoint 1	XXX (%)	0-100, Default = 100		forcible	SETPOINT	lim_sp1	40
→DLS2	Switch Limit Setpoint 2	XXX (%)	0-100, Default = 100		forcible	SETPOINT	lim_sp2	40
→ DLS3	Switch Limit Setpoint 3	XXX (%)	0-100, Default = 100		forcible	SETPOINT	lim_sp3	40
→RSP	Heat Reclaim Setpoint	XXX.X (deg F/deg C)	Default = 100 Default = 122		forcible	SETPOINT	rsp	49
→RDB	Reclaim Deadband	XX.X (ΔF/ΔC)	Default = 9.0		forcible	SETPOINT	hr deadb	49

MODE — INPUTS

ITEM	EXPANSION	UNITS	RANGE	COMMENT	WRITE STATUS	CCN TABLE	CCN POINT	PAGE NO.
GEN.I	GENERAL INPUTS							
→ONOF	On Off Switch		OPEN/CLSE			STATEGEN	ONOF	7
→LOCK	Cooler Interlock		OPEN/CLSE			STATEGEN	LOCK 1	7,24
→DLS1	Demand Limit Switch 1		OPEN/CLSE			STATEGEN	LIM SW1	7
→DLS2	Demand Limit Switch 2		OPEN/CLSE			STATEGEN	LIM_SW2	16,40
\rightarrow ICE.D	Ice Done		OFF/ON			STATEGEN	ICE_SW	16,40
ightarrowDUAL	Dual Setpoint Switch		OFF/ON			STATEGEN	SETP_SW	7
\rightarrow ELEC	Electrical Box Safety		OPEN/CLSE			STATEGEN	ELEC_BOX	7
\rightarrow PUMP	Pump Run Feedback		OFF/ON			STATEGEN	PUMP_DEF	7
<i>→OCCS</i>	Occupancy Override Swit		OFF/ON			STATEGEN	OCC_OVSW	16
ightarrowRECL	Heat Reclaim Switch		OFF/ON			STATEGEN	RECL_SW	49
→HC.SW	Heat Cool Switch Status		OFF/ON			STATEGEN	HC_SW	
→RLOC	Remote Interlock Switch		OPEN/CLSE			STATEGEN	REM-LOCK	16
→C.FLO	Reclaim Cond Flow		OPEN/CLSE			STATEGEN	CONDFLOW	17
\rightarrow DMND	4-20 mA Demand Signal	XXX.X (mA)	4 to 20			STATEGEN	LIM_ANAL	16,41
→RSET	4-20 mA Reset/Setpoint	XXX.X (mA)	4 to 20			STATEGEN	SP_RESET	16

$\mathsf{MODE} - \mathsf{OUTPUTS}$

ITEM	EXPANSION	UNITS	RANGE	COMMENT	WRITE STATUS	CCN TABLE	CCN POINT	PAGE NO.
CIR.A → CP.A1 → CP.A2 → CP.A3 → CP.A4 → HGB.A → HT.A1 → HT.A2 → HT.A4 → FAN.A → SPD.A → FRP.A → FRP.A → HR1.A → HR1.A → HR3.A → HR3.A → HR4.A → RV.A	OUTPUTS CIRCUIT A Compressor A1 Relay Compressor A2 Relay Compressor A3 Relay Compressor A4 Relay Hot Gas Bypass Circ A Comp A1 Heater Relay Comp A2 Heater Relay Comp A3 Heater Relay Comp A4 Heater Relay Circuit A Fan Stages Circ A Varifan Position Circuit A EXV % Open Refrigerant Pump Out A Free Cooling Valve A Air Cond Enter Valve A Air Cond Leaving Valv A Water Cond Leav Valve A 4 Water Cond Leav Valve A 4 Way Valve Circuit A	OFF/ON X XXX (%) OFF/ON OPEN/CLSE OPEN/CLSE OPEN/CLSE OPEN/CLSE OPEN/CLSE OPEN/CLSE	0-6 0-100 0-100	Not supported. Not supported.		CIRCA_D CIRCA_AN CIRCA_AN CIRCA_D CIRCA_D RECLAIM RECLAIM RECLAIM CIRCA_D	CP_A1 CP_A2 CP_A3 CP_A4 HGBP_A cp_a1_ht cp_a2_ht cp_a3_ht cp_a4_ht FAN_ST_A hd_pos_a EXV_A FR_PMP_A FR_VLV_A hr_ca_a hr_la_a hr_lw_a RV_A	9 9 9 9 7 9 9 9 9 12 9
CIR.B → $CP.B1$ → $CP.B2$ → $CP.B3$ → $CP.B4$ → $HT.B1$ → $HT.B2$ → $HT.B4$ → $FAN.B$ → $FAN.B$ → $FRP.B$ → $FRP.B$ → $HR1.B$ → $HR2.B$ → $HR3.B$ → $HR4.B$	OUTPUTS CIRCUIT B Compressor B1 Relay Compressor B2 Relay Compressor B3 Relay Compressor B4 Relay Hot Gas Bypass Circ B Comp B1 Heater Relay Comp B3 Heater Relay Comp B3 Heater Relay Comp B4 Heater Relay Comp B4 Heater Relay Circuit B Fan Stages Circ B Varifan Position Circuit B EXV % Open Refrigerant Pump Out B Free Cooling Valve B Air Cond Enter Valve B Air Cond Leaving Valv B Water Cond Leav Valve B 4 Way Valve Circuit B	OFF/ON X XXX (%) OFF/ON OPEN/CLSE OPEN/CLSE OPEN/CLSE OPEN/CLSE OPEN/CLSE OPEN/CLSE	0-6 0-100 0-100	Not supported. Not supported.		CIRCB_D CIRCB_AN CIRCB_AN CIRCB_AN CIRCB_AN CIRCA_D RECLAIM RECLAIM RECLAIM RECLAIM CIRCB_D	CP_B1 CP_B2 CP_B3 CP_B4 HGBP_B CP_HT_B1 CP_HT_B2 CP_HT_B3 CP_HT_B4 FAN_ST_B hd_pos_b EXV_B FR_PMP_B FR_VLV_B hr_ca_b hr_la_b hr_la_b hr_la_b RV_B	9 9 9 9 7 9 9 9 9 12,13 9
CIR.C → CP.C1 → CP.C2 → CP.C3 → CP.C4 → HGB.C → HT.C1 → HT.C2 → HT.C3 → HT.C4 → FAN.C → SPD.C → FRP.C → FRP.C → FRP.C	OUTPUTS CIRCUIT C Compressor C1 Relay Compressor C2 Relay Compressor C3 Relay Compressor C4 Relay Hot Gas Bypass Circ C Comp C1 Heater Relay Comp C2 Heater Relay Comp C3 Heater Relay Comp C4 Heater Relay Circuit C Fan Stages Circ C Varifan Position Circuit C EXV % Open Refrigerant Pump Out C Free Cooling Valve C	OFF/ON X XXX (%) XXX (%) OFF/ON OFF/ON OFF/ON	0-6 0-100 0-100	Not supported. Not supported.		CIRCC_D CIRCC_AN CIRCC_AN CIRCC_D CIRCC_D CIRCC_D CIRCC_D CIRCC_D CIRCC_AN CIRCC_D CIRCC_D CIRCC_D	CP_C1 CP_C2 CP_C3 CP_C4 HGBP_C cp_c1_ht cp_c2_ht cp_c3_ht cp_c3_ht cp_c4_ht FAN_ST_C hd_pos_c EXV_C FR_PMP_C FR_VLV_C	9 9 9 9 14 9 9 9 9
GEN.O →PMP.1 →PMP.2 →CND.P →CO.HT →CN.HT →REDY →RUN →SHUT →CATO →ALRM →ALRT →BOIL →C.ALM	GENERAL OUTPUTS Water Exchanger Pump 1 Water Exchanger Pump 2 Reclaim Condenser Pump 2 Reclaim Condenser Pump Cooler Heater Output Condenser Heater Output Chiller Ready Status Chiller Running Status Customer Shutdown Stat Chiller Capacity 0-10 v Alarm Relay Alert Relay Boiler Command Critical Alarm Relay	OFF/ON		Not supported.	forcible forcible forcible forcible	STATEGEN STATEGEN STATEGEN STATEGEN RECLAIM RECLAIM STATEGEN STATEGEN STATEGEN STATEGEN STATEGEN STATEGEN STATEGEN STATEGEN STATEGEN STATEGEN STATEGEN	CPUMP_1 CPUMP_2 COND_PUMP COOLHEAT cond_htr READY RUNNING SHUTDOWN CAPT_010 ALARM ALERT BOILER critical_qck	7 7 7 17 7 16 16 16 16

MODE — CONFIGURATION

ITEM	EXPANSION	UNITS	RANGE	COMMENT	WRITE STATUS	DEFAULT	CCN TABLE	CCN POINT	PAGE NO.
DISP →TEST →METR →LANG	DISPLAY CONFIGURATION Test Display LED's Metric Display Language Selection		OFF/ON US/METR 0=English 1=Espanol 2=Francais 3=Portugues 4=Translated			OFF US 0	N/A DISPCONF DISPCONF	display_test DISPUNIT LANGUAGE	4
UNIT →TYPE	UNIT CONFIGURATION Unit Type		1=Air Cooled 2=Heat Pump	Heat pump not supported		1	FACTORY	unit_typ	
→TONS	Unit Size	XXX (tons)	56 to 300 (nominal size — refer to Table 1 for unit modular combinations)				FACTORY	unitsize	73
→VAR.A	Nb Fan on Varifan Cir A	x	0-6			0: Std. unit, no fan drive options 1: Low ambient option. For HEVCF option set to number of fans on circuit: Size 60-70 —n/a Size 80 — 2 Size 90-120 — 3 Size 130-150 — 4 Size 160-190 — 6 Size 210-250 — 4	FACTORY	varfan_a	
→VAR.B	Nb Fan on Varifan Cir B	x	0-6			Size 275-300 — 6 0: Std. unit, no fan drive options 1: Low ambient option. For HEVCF option set to number of fans on circuit: Size 60-70 —n/a Size 80 — 2	FACTORY	varfan_b	
→VAR.C	Nb Fan on Varifan Cir C	x	0-6			Size 90-110 — 3 Size 120-170 — 4 Size 190 — 6 Size 210-250 — 4 Size 275-300 — 6 0: Std. unit, no fan drive options 1: Low ambient option.	FACTORY	varfan_c	
→HGBP	Hot Gas Bypass Control		0=Unused	1 is default for		For HEVCF option set to number of fans on circuit: Size 210-225 — 4 Size 250 — 6 Size 275 — 4 Size 300 — 6	FACTORY	hgbp_sel	18,
	,		1=Startup Only 2=Close Ctrl 3=High Ambient	med. temp. brine units (FLUD =2)					21-24
→60HZ →RECL →EHS →EMM →PAS.E	60 Hz Frequency Heat Reclaim Select Electrical Heater Stage EMM Module Installed Password Enable Password Protection Must Be Disabled to Change Password		NO/YES NO/YES 0-4 NO/YES DSBL/ENBL	Not supported		YES NO 0 NO ENBL	FACTORY FACTORY FACTORY FACTORY	freq_60H recl_opt ehs_sel emm_nrcp pass_enb	48 72
→PASS →FREE →PD4.D	Password Free Cooling Select Pro_Dialog User Display	XXX	1 to 0150 NO/YES NO/YES	Not supported. Must be set to		0111 NO NO	FACTORY FACTORY FACTORY	fac_pass freecool pd4_disp	
→BOIL →VLT.S	Boiler Command Select VLT Fan Drive Select		OFF/ON 0=No fan drive 1=Low ambient option	NO Not supported.		OFF 0	FACTORY FACTORY	boil_sel Vh_sel	
→RPM.F	VLT Fan Drive RPM	xxxx	2=HEVCF option 0 to 1140	1140 Low Ambient or HEVCF option		1140	FACTORY	Vh_rpm	
$ ightarrow MCHX \ ightarrow FC \ ightarrow VFDV \ ightarrow QMFD$	MCHX Exchanger Select Factory Country Code VFD Voltage for USA Special Demand	X Volts	NO/YES 0 to 1 208,380,460,575 0 to 255	1=USA Volts Not supported		NO 1 Voltage dependent 0	FACTORY FACTORY FACTORY FACTORY	mchx_sel fac_code vfd_volt qm_field	

MODE — CONFIGURATION (cont)

ITEM	EXPANSION	UNITS	RANGE	COMMENT	DEFAULT	CCN TABLE	CCN POINT	PAGE NO.
SERV →FLUD	SERVICE CONFIGURATION Cooler Fluid Type		1=Water 2=Brine 3=Low Brine	Low Brine is not supported.	1	SERVICE1	flui_typ	18,23- 25,31,4 6,48,73
\rightarrow MOP	EXV MOP Setpoint	XX.X (dea F/dea C)	40-60 F (4.4-15.6 C)		50	SERVICE1	mop_sp	74
→ HP.TH	High Pressure Threshold	XXX.X (psi/kPa)	(4.4-15.6 C) 500-640 psi (3447 to 4412 kPa)		609	SERVICE1	hp_th	24
ightarrowSHP.A	Cir A Superheat Setp	XX.X (ΔF/ΔC)	3-14 F (1.7-7.8 C)		9.0	SERVICE1	sh_sp_a	74
ightarrowSHP.B	Cir B Superheat Setp	XX.X (ΔF/ΔC)	(1.7-7.8 C) 3-14 F (1.7-7.8 C)		9.0	SERVICE1	sh_sp_b	74
ightarrowSHP.C	Cir C Superheat Setp	XX.X (ΔF/ΔC)	3-14 F (1.7-7.8 C)		9.0	SERVICE1	sh_sp_c	74
→HTR	Cooler Heater DT Setp	ΧΧ.Χ (ΔΕ/ΔC)	0.5-9 F (0.3-5.0 C)		2.0 (Number of degrees added to brine freeze set point to enable cooler heater.)	SERVICE1	heatersp	46,56
→EWTO →AU.SM →BOTH →LLWT	Entering Water Control Auto Start When SM Lost HSM Both Command Select Brine Min. Fluid Temp.	XX (deg F/deg C)	NO/YES NO/YES NO/YES -20-38 F (-28.9-3.3)		NO NO NO NO 28.0 (3.3)	SERVICE1 SERVICE1 USER USER	ewt_opt auto_sm both_sel Mini_Lwt	31 75
→LOSP	Brine Freeze Setpoint	XX.X (deg F/deg C)	-4-50 F (-20-10 C)		34.0	SERVICE1	lowestsp	24,25,3 1,46,48 ,56,73
→HD.PG	Varifan Proportion Gain	XX.X	-10-10		Std. Unit and Low Amb.: 2.0 HEVCF: 1.0	SERVICE1	hd_pg	,00,70
→HD.DG	Varifan Derivative Gain	XX.X	-10-10		Std. Unit and Low Amb.: 0.4 HEVCF: 0.1	SERVICE1	hd_dg	
→HD.IG	Varifan Integral Gain	XX.X	-10-10		Std. Unit and Low Amb.: 0.2 HEVCF: 0.1	SERVICE1	hd_ig	
→HR.MI →HR.MA →AVFA →AVFB →AVFC	Reclaim Water Valve Min Reclaim Water Valve Max Attach Drive to Fan A Attach Drive to Fan B Attach Drive to Fan C	XXX.X (%) XXX.X (%)	NO/YES NO/YES NO/YES	Not supported. Not supported. Not supported.	100 100 NO NO NO	SERVICE1 SERVICE1	min_3w max_3w	

MODE — CONFIGURATION (cont)

ITEM	EXPANSION	UNITS	RANGE	COMMENT	DEFAULT	CCN TABLE	CCN POINT	PAGE NO.
OPTN →CCNA	UNIT OPTIONS 2 CONTROLS	S XXX	1-239		1	N/A	CCNA	45
ightarrow CCNB	CCN Bus Number	XXX	0-239		Ó	N/A	CCNB	46
<i>→BAUD</i>	CCN Baud Rate		1=2400 2=4800		3	N/A	BAUD	
			3=9600					
			4=19200					
→LOAD	Loading Sequence Select		5=38400 0=Equal		0	USER	seq_typ	21,22,
			1=Staged				seq_typ	
<i>→LLCS</i>	Lead/Lag Circuit Select		0=Automatic		0	USER	lead_cir	21,22
			1=Cir A Leads 2=Cir B Leads					
B1 0			3=Cir C Leads		DODI	LIGER	1	10.04
→RL.S	Ramp Load Select		ENBL/DSBL		DSBL	USER	ramp_sel	18,24, 46
\rightarrow DELY	Minutes Off Time	XX (Minutes)	1 to 15		1	USER	off_on_d	18,30,
→ICE.M	lee Mede Enable		ENBL/DSBL		DSBL	USER	ion onfa	46,75 31
→ICE.WI →PUMP	Ice Mode Enable Cooler Pumps Sequence		0=No Pump		0	USER	ice_cnfg pump_seq	29,30,
	1 ' '		1=1 Pump Only				'- '	43,46
			2=2 Pumps Auto 3=PMP 1 Manual					
			4=PMP 2 Manual					
→ROT.P →PM.PS	Pump Rotation Delay Periodic Pump Start	XXXX (hours)	24 to 3000 NO-YES		48 NO	USER USER	pump_del pump_per	46 30.48
→P.SBY	Stop Pump In Standby		NO-YES		NO	USER	pump_sby	30,40
→P.LOC	Flow Checked if Pmp Off	VVVV	NO-YES		YES	USER	pump_loc	30
→LS.ST →LS.ND	Night Low Noise Start Night Low Noise End	XX.XX XX.XX	00.00-23.59 00-00-23.59		00.00	USER USER	nh_start nh_end	30 47
→LS.LT	Low Noise Capacity Lim	XXX (%)	0-100		100	USER	nh_limit	46,47
→OA.TH	Heat Mode OAT Threshold	(deg F/deg C)		Not supported.	5 F	USER	heat_th	
→ FREE	Free Cooling OAT Limit	(deg F/deg C) XX.X (deg F/deg C)		Not supported.	32.0	USER	free_oat	
→BO.TH	Boiler OAT Threshold	XX.X (deg F/deg C)	5-32 F (-15-0 C)	Not supported.	14	USER	boil_th	
→ EHST	Elec Stag OAT Threshold	XX.XX (deg F/deg C)	23 -70 F (–5-21 C)	Not supported.	41	USER	ehs_th	
→ EHSB	Last Heat Elec Backup	(deg 1 /deg 0)	NO-YES	Not supported.	NO	USER	ehs_back	
→E.DEF →EHSP	Quick EHS in Defrost	VV (min)	NO-YES	Not supported.	NO 0	USER USER	ehs_defr	
→ENSP →AUTO	Elec Heating Pulldown Auto Changeover Select	XX (min)	NO-YES	Not supported. Not supported.	NO	USER	ehs_pull auto_sel	
RSET	RESET, COOL AND HEAT TE	MP						
→ <i>CRST</i>	Cooling Reset Type		0=No Reset		0	USER	cr_sel	32,37,
			1=Out Air Temp 2=Delta T Temp					46
			3=4-20 mA Input		$\mathbf{Y} = \mathbf{V}$			
→HRST	Heating Reset Type		4=Space Temp 0=No Reset	Not supported.	0	USER	hr_sel	
<i>→111131</i>	riedling rieset Type		1=Out Air Temp	Not supported.	O	OSLIT	111_361	
			2=Delta T Temp					
→ DMDC	Demand Limit Select		3=4-20 mA Input 0=None		0	USER	lim_sel	40,41,
, 0	20.116.116 2.11111 20.001		1=Switch			002		46
<i>→DMMX</i>	mA for 100% Demand Lim	XX.X (mA)	2=4-20 mA Input		0.0	USER	lim_mx	41
\rightarrow DMZE	mA for 0% Demand Limit	XX.X (mA)			0.0	USER	lim_ze	41
→MSSL	Master/Slave Select		0=Disable 1=Master		0	MST_SLV	ms_sel	46,47,
			2=Slave					73,75
→SLVA	Slave Address	XXX	1-236		2 DSBL	MST_SLV	slv_addr	10.45
→LLBL	Lead/Lag Balance Select		ENBL/DSBL		DSBL	MST_SLV	II_bal	18,45, 46
ightarrowLLBD	Lead/Lag Balance Delta	XXX (hours)	40-400		168	MST_SLV	II_bal_d	18,45,
\rightarrow LLDY	Lag Start Delay	XX (minutes)	2-30		10	MST_SLV	Isrt_tim	46 18,45
→LAGP	Lag Unit Pump Select		0=Off if Unit		o	MST_SLV	lag_pump	18,21,
			stopped 1=On if Unit					45
			stopped					
ightarrowLPUL	Lead Pulldown Time	XX (minutes)	0-60		0	MST_SLV	lead_pul	18,45

MODE — TIMECLOCK

ITEM	EXPANSION	UNITS	RANGE	COMMENT	WRITE STATUS	CCN TABLE	CCN POINT	PAGE NO.
TIME →HH.MM	TIME OF DAY Hour and Minute	XX.XX	00.00-23.59		forcible*	N/A	HH.MM	
DATE →MNTH →DOM →DAY	MONTH DATE DAY AND YEAR Month of Year Day of Month Day of Week	xx	1=January 2=February 3=March 4=April 5=May 6=June 7=July 8=August 9=September 10=October 11=November 12=December 1:31 1=Monday 2=Tuesday 3=Wednesday 4=Thursday 5=Friday 6=Saturday 7=Sunday		forcible* forcible* forcible*	N/A N/A N/A	MNTH DOM DAY	
→ YEAR	Year of Century	xx	7=Sunday 00-99		forcible*	N/A	YEAR	
SCH1 →PER.1 →PER.1→OCC.1 →PER.1→UNO.1 →PER.1→MON.1 →PER.1→WED.1 →PER.1→THU.1 →PER.1→THU.1 →PER.1→SAT.1 →PER.1→SUN.1 →PER.1→SUN.1 →PER.1→HOL.1	TIME SCHEDULE 1 Period 1 Occ/Unocc Sel Occupied Time Unoccupied Time Monday Select Tuesday Select Wednesday Select Thursday Select Friday Select Saturday Select Sunday Select Holiday Select	XX.XX XX.XX	00.00-23.59 00.00-23.59 NO/YES NO/YES NO/YES NO/YES NO/YES NO/YES NO/YES NO/YES NO/YES		forcible forcible forcible forcible forcible forcible forcible forcible forcible	OCC1P01S OCC1P01S OCC1P01S OCC1P01S OCC1P01S OCC1P01S OCC1P01S OCC1P01S OCC1P01S OCC1P01S	OCCTOD1 UNOCTOD1 DOW1 DOW1 DOW1 DOW1 DOW1 DOW1 DOW1 D	30
→ PER.2 → PER.2→ OCC.2 → PER.2→ UNO.2 → PER.2→ TUE.2 → PER.2→ WED.2 → PER.2→ THU.2 → PER.2→ FRI.2 → PER.2→ SAT.2 → PER.2→ SUN.2 → PER.2→ HOL.2 → PER.3	Period 2 Occ/Unocc Sel Occupied Time Unoccupied Time Monday Select Tuesday Select Wednesday Select Thursday Select Friday Select Saturday Select Sunday Select Holiday Select Holiday Select Period 3 Occ/Unocc Sel	XX.XX XX.XX	00.00-23.59 00.00-23.59 NO/YES NO/YES NO/YES NO/YES NO/YES NO/YES NO/YES NO/YES NO/YES		forcible forcible forcible forcible forcible forcible forcible forcible forcible forcible	OCC1P01S OCC1P01S OCC1P01S OCC1P01S OCC1P01S OCC1P01S OCC1P01S OCC1P01S OCC1P01S OCC1P01S OCC1P01S OCC1P01S	OCCTOD2 UNOCTOD2 DOW2 DOW2 DOW2 DOW2 DOW2 DOW2 DOW2 D	K
→ PER.3→ OCC.3 → PER.3→ MON.3 → PER.3→ MON.3 → PER.3→ TUE.3 → PER.3→ THU.3 → PER.3→ FRI.3 → PER.3→ SAT.3 → PER.3→ SUN.3 → PER.3→ HOL.3	Occupied Time Unoccupied Time Monday Select Tuesday Select Wednesday Select Thursday Select Friday Select Saturday Select Sunday Select Holiday Select	XX.XX XX.XX	00.00-23.59 00.00-23.59 NO/YES NO/YES NO/YES NO/YES NO/YES NO/YES NO/YES NO/YES NO/YES		forcible forcible forcible forcible forcible forcible forcible forcible forcible forcible	OCC1P01S OCC1P01S OCC1P01S OCC1P01S OCC1P01S OCC1P01S OCC1P01S OCC1P01S OCC1P01S OCC1P01S	OCCTOD3 UNOCTOD3 DOW3 DOW3 DOW3 DOW3 DOW3 DOW3 DOW3 D	
→ PER.4 → PER.4→ OCC.4 → PER.4→ UNO.4 → PER.4→ MON.4 → PER.4→ WED.4 → PER.4→ THU.4 → PER.4→ FRI.4 → PER.4→ SAT.4 → PER.4→ SUN.4 → PER.4→ HOL.4	Period 4 Occ/Unocc Sel Occupied Time Unoccupied Time Monday Select Tuesday Select Wednesday Select Thursday Select Friday Select Saturday Select Sunday Select Holiday Select Beriad Select Beriad Select Holiday Select	XX.XX XX.XX	00.00-23.59 00.00-23.59 NO/YES NO/YES NO/YES NO/YES NO/YES NO/YES NO/YES NO/YES NO/YES		forcible forcible forcible forcible forcible forcible forcible forcible forcible forcible	OCC1P01S OCC1P01S OCC1P01S OCC1P01S OCC1P01S OCC1P01S OCC1P01S OCC1P01S OCC1P01S OCC1P01S	OCCTOD4 UNOCTOD4 DOW4 DOW4 DOW4 DOW4 DOW4 DOW4 DOW4 D	
→PER.5 →PER.5→OCC.5 →PER.5→UNO.5 →PER.5→MON.5 →PER.5→WED.5 →PER.5→THU.5 →PER.5→THU.5 →PER.5→SAT.5 →PER.5→SON.5 →PER.5→SUN.5 →PER.5→HOL.5	Period 5 Occ/Unocc Sel Occupied Time Unoccupied Time Monday Select Tuesday Select Wednesday Select Thursday Select Friday Select Saturday Select Sunday Select Holiday Select	XX.XX XX.XX	00.00-23.59 00.00-23.59 NO/YES NO/YES NO/YES NO/YES NO/YES NO/YES NO/YES NO/YES NO/YES		forcible forcible forcible forcible forcible forcible forcible forcible forcible forcible	OCC1P01S OCC1P01S OCC1P01S OCC1P01S OCC1P01S OCC1P01S OCC1P01S OCC1P01S OCC1P01S OCC1P01S	OCCTOD5 UNOCTOD5 DOW5 DOW5 DOW5 DOW5 DOW5 DOW5 DOW5 D	
$\begin{array}{l} \rightarrow \text{PER.6} \\ \rightarrow \text{PER.6} \rightarrow \text{OCC.6} \\ \rightarrow \text{PER.6} \rightarrow \text{UNO.6} \\ \rightarrow \text{PER.6} \rightarrow \text{MON.6} \\ \rightarrow \text{PER.6} \rightarrow \text{TUE.6} \\ \rightarrow \text{PER.6} \rightarrow \text{WED.6} \\ \rightarrow \text{PER.6} \rightarrow \text{THU.6} \\ \rightarrow \text{PER.6} \rightarrow \text{FRI.6} \\ \rightarrow \text{PER.6} \rightarrow \text{SAT.6} \\ \rightarrow \text{PER.6} \rightarrow \text{SUN.6} \\ \rightarrow \text{PER.6} \rightarrow \text{HOL.6} \\ \end{array}$	Period 6 Occ/Unocc Sel Occupied Time Unoccupied Time Monday Select Tuesday Select Wednesday Select Thursday Select Friday Select Saturday Select Sunday Select Holiday Select	XX.XX XX.XX	00.00-23.59 00.00-23.59 NO/YES NO/YES NO/YES NO/YES NO/YES NO/YES NO/YES NO/YES NO/YES		forcible forcible forcible forcible forcible forcible forcible forcible forcible forcible	OCC1P01S OCC1P01S OCC1P01S OCC1P01S OCC1P01S OCC1P01S OCC1P01S OCC1P01S OCC1P01S OCC1P01S	OCCTOD6 UNOCTOD6 DOW6 DOW6 DOW6 DOW6 DOW6 DOW6 DOW6 D	

^{*}Password protected.

MODE — TIMECLOCK (cont)

ITEM	EXPANSION	UNITS	RANGE	COMMENT	WRITE STATUS	CCN TABLE	CCN POINT	PAGE NO.
SCH1 →PER.7	TIME SCHEDULE 1 Period 7 Occ/Unocc Sel							30,32
→PER.7→OCC.7	Occupied Time	XX.XX	00.00-23.59		forcible	OCCP01S	OCCTOD7	
→PER.7→UNO.7	Unoccupied Time	XX.XX	00.00-23.59		forcible	OCCP01S	UNOCTOD7	
→PER.7→MON.7 →PER.7→TUE.7	Monday Select Tuesday Select		NO/YES NO/YES		forcible forcible	OCCP01S OCCP01S	DOW7 DOW7	
<i>→PER.7→WED.7</i>	Wednesday Select		NO/YES		forcible	OCCP01S	DOW7	
→PER.7→THU.7 →PER.7→FRI.7	Thursday Select Friday Select		NO/YES NO/YES		forcible forcible	OCCP01S OCCP01S	DOW7 DOW7	
→PER.7→SAT.7	Saturday Select		NO/YES		forcible	OCCP01S	DOW7	
→PER.7→SUN.7	Sunday Select Holiday Select		NO/YES		forcible	OCCP01S	DOW7	
→PER.7→HOL.7 →PER.8	Period 8 Occ/Unocc Sel		NO/YES		forcible	OCCP01S OCCP01S	DOW7	
→PER.8→OCC.8	Occupied Time	XX.XX	00.00-23.59		forcible	OCCP01S	OCCTOD8	
→PER.8→UNO.8 →PER.8→MON.8	Unoccupied Time Monday Select	XX.XX	00.00-23.59 NO/YES		forcible forcible	OCCP01S OCCP01S	UNOCTOD8 DOW8	
→PER.8→TUE.8	Tuesday Select		NO/YES		forcible	OCCP01S	DOW8	
→PER.8→WED.8 →PER.8→THU.8	Wednesday Select Thursday Select		NO/YES NO/YES		forcible forcible	OCCP01S OCCP01S	DOW8 DOW8	
→PER.8→FRI.8	Friday Select		NO/YES		forcible	OCCP01S	DOW8	
→PER.8→SAT.8	Saturday Select		NO/YES		forcible	OCCP01S	DOW8	
→PER.8→SUN.8 →PER.8→HOL.8	Sunday Select Holiday Select		NO/YES NO/YES		forcible forcible	OCCP01S OCCP01S	DOW8 DOW8	
SCH2	TIME SCHEDULE 2							30,32
→PER.1	Period 1 Occ/Unocc Sel	VV VV	00 00 22 50		forsible	OCCOPOSE	OCCTOD1	
→PER.1→OCC.1 →PER.1→UNO.1	Occupied Time Unoccupied Time	XX.XX XX.XX	00.00-23.59 00.00-23.59		forcible forcible	OCC2P02S OCC2P02S	OCCTOD1 UNOCTOD1	
→PER.1→MON.1	Monday Select		NO/YES		forcible	OCC2P02S	DOW1	
→PER.1→TUE.1 →PER.1→WED.1	Tuesday Select Wednesday Select		NO/YES NO/YES		forcible forcible	OCC2P02S OCC2P02S	DOW1 DOW1	
→PER.1→THU.1	Thursday Select		NO/YES		forcible	OCC2P02S	DOW1	
→PER.1→FRI.1 →PER.1→SAT.1	Friday Select Saturday Select		NO/YES NO/YES		forcible forcible	OCC2P02S OCC2P02S	DOW1 DOW1	
→PER.1→SAT.1 →PER.1→SUN.1	Sunday Select		NO/YES		forcible	OCC2P02S	DOW1	
→PER.1→HOL.1	Holiday Select Period 2 Occ/Unocc Sel		NO/YES		forcible	OCC2P02S	DOW1	
→PER.2 →PER.2→OCC.2	Occupied Time	XX.XX	00.00-23.59		forcible	OCC2P02S	ОССТОВ	
→PER.2→UNO.2	Unoccupied Time	XX.XX	00.00-23.59		forcible	OCC2P02S	UNOCTOD2	
→PER.2→MON.2 →PER.2→TUE.2	Monday Select Tuesday Select		NO/YES NO/YES		forcible forcible	OCC2P02S OCC2P02S	DOW2 DOW2	
ightarrowPER.2 $ ightarrow$ WED.2	Wednesday Select		NO/YES		forcible	OCC2P02S	DOW2	
→PER.2→THU.2	Thursday Select		NO/YES		forcible	OCC2P02S	DOW2 DOW2	
→PER.2→FRI.2 →PER.2→SAT.2	Friday Select Saturday Select		NO/YES NO/YES		forcible forcible	OCC2P02S OCC2P02S	DOW2	
→PER.2→SUN.2	Sunday Select		NO/YES		forcible	OCC2P02S	DOW2	
→PER.2→HOL.2 →PER.3	Holiday Select Period 3 Occ/Unocc Sel		NO/YES		forcible	OCC2P02S	DOW2	
→PER.3→OCC.3	Occupied Time	XX.XX	00.00-23.59		forcible	OCC2P02S	OCCTOD	
→PER.3→UNO.3 →PER.3→MON.3	Unoccupied Time Monday Select	XX.XX	00.00-23.59 NO/YES		forcible forcible	OCC2P02S OCC2P02S	UNOCTOD3 DOW3	
→PER.3→TUE.3	Tuesday Select		NO/YES		forcible	OCC2P02S	DOW3	
→PER.3→WED.3 →PER.3→THU.3	Wednesday Select Thursday Select		NO/YES NO/YES		forcible forcible	OCC2P02S OCC2P02S	DOW3 DOW3	
→PER.3→TH0.3 →PER.3→FRI.3	Friday Select		NO/YES		forcible	OCC2P02S	DOW3	
→PER.3→SAT.3	Saturday Select		NO/YES		forcible	OCC2P02S	DOW3	
→PER.3→SUN.3 →PER.3→HOL.3	Sunday Select Holiday Select		NO/YES NO/YES		forcible forcible	OCC2P02S OCC2P02S	DOW3 DOW3	
→PER.4	Period 4 Occ/Unocc Sel	VV VO						
→PER.4→OCC.4 →PER.4→UNO.4	Occupied Time Unoccupied Time	XX.XX XX.XX	00.00-23.59 00.00-23.59		forcible forcible	OCC2P02S OCC2P02S	OCCTOD4 UNOCTOD4	1
→PER.4→MON.4	Monday Select	, , , , , , ,	NO/YES NO/YES		forcible	OCC2P02S	DOW4	1
→PER.4→TUE.4 →PER.4→WED.4	Tuesday Select Wednesday Select		NO/YES NO/YES		forcible forcible	OCC2P02S OCC2P02S	DOW4 DOW4	1
→PER.4→THU.4	Thursday Select		NO/YES		forcible	OCC2P02S	DOW4	
→PER.4→FRI.4 →PER.4→SAT.4	Friday Select Saturday Select		NO/YES		forcible	OCC2P02S	DOW4 DOW4	
→PER.4→SA I.4 →PER.4→SUN.4	Saturday Select Sunday Select		NO/YES NO/YES		forcible forcible	OCC2P02S OCC2P02S	DOW4 DOW4	
→PER.4→HOL.4	Holiday Select		NO/YES		forcible	OCC2P02S	DOW4	
→PER.5 →PER.5→OCC.5	Period 5 Occ/Unocc Sel Occupied Time	XX.XX	00.00-23.59		forcible	OCC2P02S	OCCTOD5	
→PER.5→UNO.5	Unoccupied Time	XX.XX	00.00-23.59		forcible	OCC2P02S	UNOCTOD5	
→PER.5→MON.5 →PER.5→TUE.5	Monday Select Tuesday Select		NO/YES		forcible forcible	OCC2P02S OCC2P02S	DOW5 DOW5	
<i>→PER.5→WED.5</i>	Wednesday Select		NO/YES NO/YES		forcible	OCC2P02S	DOW5	
→PER.5→THU.5	Thursday Śelect		NO/YES		forcible	OCC2P02S	DOW5	
→PER.5→FRI.5 →PER.5→SAT.5	Friday Select Saturday Select		NO/YES NO/YES		forcible forcible	OCC2P02S OCC2P02S	DOW5 DOW5	
→PER.5→SUN.5	Sunday Select		NO/YES		forcible	OCC2P02S	DOW5	
→PER.5→HOL.5 →PER.6	Holiday Select Period 6 Occ/Unocc Sel		NO/YES		forcible	OCC2P02S	DOW5	1
→PER.6→OCC.6	Occupied Time	XX.XX	00.00-23.59		forcible	OCC2P02S	OCCTOD6	1
→PER.6→UNO.6	Unoccupied Time	XX.XX	00.00-23.59		forcible	OCC2P02S	UNOCTOD6	
→PER.6→MON.6 →PER.6→TUE.6	Monday Select Tuesday Select		NO/YES NO/YES		forcible forcible	OCC2P02S OCC2P02S	DOW6 DOW6	1
<i>→PER.6→WED.6</i>	Wednesday Select		NO/YES NO/YES		forcible	OCC2P02S	DOW6	1
→PER.6→THU.6 →PER.6→FRI.6	Thursday Select Friday Select		NO/YES NO/YES		forcible forcible	OCC2P02S OCC2P02S	DOW6 DOW6	1
→PER.6→SAT.6	Saturday Select		NO/YES		forcible	OCC2P02S	DOW6	
→PER.6→SUN.6	Sunday Select	1	NO/YES	1	forcible	OCC2P02S	DOW6	1

MODE — TIMECLOCK (cont)

ITEM	EXPANSION	UNITS	RANGE	COMMENT	WRITE STATUS	CCN TABLE	CCN POINT	PAGE NO.
→PER.7 →PER.7→OCC.7 →PER.7→UNO.7 →PER.7→MON.7 →PER.7→TUE.7 →PER.7→WED.7 →PER.7→FRI.7 →PER.7→SAT.7 →PER.7→SUN.7 →PER.7→SUN.7 →PER.7→PER.7 →PER.7→SUN.7 →PER.8	Period 7 Occ/Unocc Sel Occupied Time Unoccupied Time Monday Select Tuesday Select Wednesday Select Thursday Select Friday Select Saturday Select Sunday Select Sunday Select Period 8 Occ/Unocc Sel	XX.XX XX.XX	00.00-23.59 00.00-23.59 NO/YES NO/YES NO/YES NO/YES NO/YES NO/YES NO/YES NO/YES NO/YES NO/YES		forcible forcible forcible forcible forcible forcible forcible forcible forcible	OCC2P02S	OCCTOD7 UNOCTOD7 DOW7 DOW7 DOW7 DOW7 DOW7 DOW7 DOW7 D	
→ PER.8→ OCC.8 → PER.8→ UNO.8 → PER.8→ TUE.8 → PER.8→ TUE.8 → PER.8→ THU.8 → PER.8→ FRI.8 → PER.8→ SAT.8 → PER.8→ SUN.8 → PER.8→ HOL.8	Occupied Time Unoccupied Time Monday Select Tuesday Select Wednesday Select Thursday Select Friday Select Saturday Select Sunday Select Holiday Select	XX.XX XX.XX	00.00-23.59 00.00-23.59 NO/YES NO/YES NO/YES NO/YES NO/YES NO/YES NO/YES NO/YES NO/YES		forcible forcible forcible forcible forcible forcible forcible forcible forcible forcible		OCCTOD8 UNOCTOD8 DOW8 DOW8 DOW8 DOW8 DOW8 DOW8 DOW8 D	
HOLI →HOL.1 →HOL.1→MON.1	HOLIDAYS CONFIGURATION Holidays Config 1 Holiday Start Month		1=January 2=February 3=March 4=April 5=May 6=June 7=July 8=August 9=September 10=October 11=November		forcible	HOLDY_01	HOL_MON	
→HOL.1→DAY.1 →HOL.1→DUR.1 →HOL.1→HOL.2	Holiday Start Day Holiday Duration in Day Holidays Config 2	XX XX	12=December 1 to 31 1 to 99		forcible forcible	HOLDY_01 HOLDY_01	HOL_DAY HOL_LEN	
→HOL.1→MON.2	Holiday Start Month		See HOL.1→MON.1		forcible	HOLDY_02	HOL_MON	
\rightarrow HOL.2 \rightarrow DAY.2	Holiday Start Day		See HOL.1→DAY.1		forcible	HOLDY_02	HOL_DAY	
→HOL.2→DUR.2	Holiday Duration in Day		HOL.1→DAY.1 See HOL.1→DUR.1		forcible	HOLDY_02	HOL_LEN	
→HOL.9 →HOL.9→MON.9	Holidays Config 9 Holiday Start Month		See		forcible	HOLDY_09	HOL_MON	
→HOL.9→DAY.9	Holiday Start Day		HOL.1→MON.1 See		forcible	HOLDY_09	HOL_DAY	
→HOL.9→DUR.9	Holiday Duration in Days		HOL.1→DAY.1 See HOL.1→DUR.1		forcible	HOLDY_09	HOL_LEN	
\rightarrow HOL.10 \rightarrow HO.10 \rightarrow HOL.10 \rightarrow MO.10	Holidays Config 10 Holiday Start Month		See		forcible	HOLDY_09		
→ <i>HOL.10</i> → <i>DA.10</i>	Holiday Start Day		HOL.1→MON.1 See		forcible	HOLDY_09		
→HOL.10→DU.10	Holiday Duration in Days		HOL.1→DAY.1 See HOL.1→DUR.1		forcible	HOLDY_09		
ightarrow HOL.16 $ ightarrow$ HOL.16 $ ightarrow$ MO.16	Holidays Config 16 Holiday Start Month		See		forcible	HOLDY_16		
<i>→HOL.16→DA.16</i>	Holiday Start Day		HOL.1→MON.1 See		forcible			
\rightarrow HOL.16 \rightarrow DU.16	Holiday Duration in Days		HOL.1→DAY.1 See HOL.1→DUR.1		forcible			
MCFG →AL.SV →CHRG → WATE →PMP.1 →PMP.2 →PMP.C →W.FIL →RS.SV	SERVICE MAINTENANCE COI Service Warning Select Refrigerant Charge Water Loop Size Pump 1 (days) Pump 2 (days) Cond Pump (days) Water Filter (days) Servicing Alert Reset	NFIG XXXX (days) XXXX (days) XXXX (days) XXXX (days) XXXX (days)	NO/YES NO/YES NO/YES NO/YES 0-65,500 0-65,500 0-65,500 0-Default 1=Refrigerant Charge 2=Water loop size 3=Not used 4=Pump 1 5=Pump 2 6=Reclaim Pump 7=Water filter 8=Reset all		forcible* forcible* forcible+ forcible+ forcible+ forcible+ forcible+ forcible+	MAINTCFG MAINTCFG MAINTCFG MAINTCFG MAINTCFG MAINTCFG MAINTCFG SERMAINT	s_alert charge_a wloop_c pump1_c pump2_c hpump_c wfilte_c s_reset	76

^{*}Default=NO. †Default=0.

MODE — OPERATING MODES

ITEM	EXPANSION	UNITS	RANGE	COMMENT	WRITE STATUS	CCN TABLE	CCN POINT	PAGE NO.
SLCT →OPER	OPERATING TYPE CONTROL Operating Type Control		0=Switch Ctrl 1=Time Sched	Default = 0	forcible	N/A	N/A	30,42, 45,49
→SP.SE	Setpoint Select		2=CCN Control 0=Setpoint Occ 1=Setpoint1 2=Setpoint2 3=4-20mA Setp 4=Dual Setp Sw	Default = 0	forcible	N/A	N/A	31,32
→ HC.SE	Heat Cool Select		0=Cooling 1=Heating 2=Auto Chgover 3=Heat Cool Sw	Default = 0 1-3 not supported.	forcible	GENUNIT	HC_SEL	31
→RL.SE	Reclaim Select		0=No 1=Yes 2=Switch Ctrl	Default = 0 Yes = CCN control	forcible	GENUNIT	RECL_SEL	49
MODE → MDO1 → MD02 → MD03 → MD05 → MD06 → MD07 → MD08 → MD10 → MD11 → MD12 → MD13 → MD15 → MD16 → MD17 → MD18 → MD16 → MD17 → MD18 → MD19 → MD20 → MD21 → MD22 → MD23 → MD24 → MD25 → MD24 → MD25 → MD25 → MD26 → MD27 → MD28 → MD29 → MD29 → MD31 → MD31 → MD31 → MD31	MODES CONTROLLING UNIT Startup Delay in Effect Second Setpoint in Use Reset in Effect Demand Limit Active Ramp Loading Active Cooler Heater Active Water Pumps Rotation Pump Periodic Start Night Low Noise Active System Manager Active Mast Slave Ctrl Active Auto Changeover Active Free Cooling Active Reclaim Active Heating Low EWT Lockout Boiler Active Ice Mode in Effect Defrost Active on Cir A Defrost Active on Cir A Defrost Active on Cir B Low Suction Circuit A Low Suction Circuit C High DGT Circuit C High DGT Circuit C High DGT Circuit C High Pres Override Cir A High Pres Override Cir B High Pres Override Cir C Low Superheat Circuit A Low Superheat Circuit A Low Superheat Circuit B Low Superheat Circuit C		OFF/ON	Not supported. Not supported. Not supported. Not supported. Not supported. Not supported. Not supported.		MODES	MODE_01 MODE_02 MODE_03 MODE_04 MODE_05 MODE_06 MODE_07 MODE_08 MODE_10 MODE_11 MODE_12 MODE_13 MODE_14 MODE_15 MODE_16 MODE_16 MODE_17 MODE_18 MODE_19 MODE_21 MODE_21 MODE_22 MODE_23 MODE_23 MODE_24 MODE_24 MODE_25 MODE_25 MODE_26 MODE_27 MODE_26 MODE_27 MODE_28 MODE_29 MODE_31 MODE_31 MODE_31	46 46 46 46 46 46 47 47 47 47 47 47 47 47 47 47 47 47 47

NOTE: See Operating Modes starting on page 46.

MODE — ALARMS

ITEM	EXPANSION*	UNITS	RANGE	COMMENT	WRITE STATUS	CCN TABLE	CCN POINT	PAGE NO.
R.ALM	RESET ALL CURRENT ALRM				forcible	N/A	N/A	62
ALRM†	CURRENTLY ACTIVE ALARM Current Alarm 1 Current Alarm 2 Current Alarm 3 Current Alarm 4 Current Alarm 5					GENUNIT GENUNIT GENUNIT GENUNIT GENUNIT	alarm_1 alarm_2 alarm_3 alarm_4 alarm_5	62 62 62 62 62 62 62
H.ALM**	ALARM HISTORY Alarm History #1 Alarm History #2 Alarm History #29 Alarm History #30					ALRMHIST ALRMHIST ALRMHIST ALRMHIST ALRMHIST	alm_history_01 alm_history_02 alm_history_29 alm_history_30	

^{*}Expanded display will be actual alarm expansion. †Up to five current alarms will be displayed. **History of thirty past alarms will be displayed.

APPENDIX B — CCN TABLES STATUS DISPLAY TABLES

TABLE	DISPLAY NAME	RANGE	UNITS	POINT NAME	WRITE STATUS
CIRCA_AN	Percent Total Capacity Discharge Pressure Suction Pressure Crank Heater Current Cp1 Crank Heater Current Cp2 Crank Heater Current Cp4 Motor Thermistor Comp 1 Motor Thermistor Comp 2 Motor Thermistor Comp 3 Motor Thermistor Comp 4 Saturated Condensing Tmp Saturated Suction Temp Suction Gas Temperature Suction Superheat Temp EXV Position Head Press Actuator Pos	0 - 100 nnn.n nnn.n nnn.n nnn.n nnn.n nnnn nnnn nnnn tnnnn tnnnn ±nnn.n ±nnn.n ±nnn.n tnnn.n tnnn.n 0 - 100 0 - 100	PSI PSI AMPS AMPS AMPS AMPS OHMS OHMS OHMS OHMS OHMS *F *F *F *F % %	CAPA_T DP_A SP_A cpa1_cur cpa2_cur cpa3_cur cpa4_cur cpa1_tmp cpa2_tmp cpa3_tmp cpa4_tmp SCT_A SST_A SUCT_T_A SH_A EXV_A hd_pos_a	
CIRCA_D	Compressor 1 Output Compressor 2 Output Compressor 3 Output Compressor 4 Output Compressor 1 Heater Out Compressor 2 Heater Out Compressor 3 Heater Out Compressor 4 Heater Out Hot Gas Bypass Output	On/Off On/Off On/Off On/Off On/Off On/Off On/Off On/Off On/Off		CP_A1 CP_A2 CP_A3 CP_A4 cp_a1_ht cp_a2_ht cp_a3_ht cp_a4_ht HGBP_V_A	
	Fan Output DO # 1 Fan Output DO # 2 Fan Output DO # 3 Fan Output DO # 4 Fan Output DO # 5 Fan Output DO # 6 Fan Staging Number	On/Off On/Off On/Off On/Off On/Off On/Off On-Off O-6		fan_a1 fan_a2 fan_a3 fan_a4 fan_a5 fan_a6 FAN_ST_A	
	4 Way Refrigerant Valve	On/Off		RV_A	
CIRCB_D	Percent Total Capacity Discharge Pressure Suction Pressure Crank Heater Current Cp1 Crank Heater Current Cp2 Crank Heater Current Cp3 Crank Heater Current Cp4 Motor Thermistor Comp 1 Motor Thermistor Comp 2 Motor Thermistor Comp 3 Motor Thermistor Comp 4 Saturated Condensing Tmp Saturated Suction Temp Suction Gas Temperature Suction Superheat Temp EXV Position Head Press Actuator Pos	0 - 100 nnn.n nnn.n nnn.n nnn.n nnn.n nnn.n nnnn nnnn nnnn tnnn tnnn ±nnn.n ±nnn.n ±nnn.n tnnn 0-100 0-100	% PSI PSI AMPS AMPS AMPS OHMS OHMS OHMS OHMS *F *F *F *% %	CAPB_T DP_B SP_B cpb1_cur cpb2_cur cpb3_cur cpb4_cur cpb1_tmp cpb2_tmp cpb3_tmp cpb4_tmp SCT_B SST_B SUCT_T_B SH_B EXV_B hd_pos_b	
CIRCB_D	Compressor 1 Output Compressor 2 Output Compressor 3 Output Compressor 4 Output Compressor 1 Heater Out Compressor 2 Heater Out Compressor 3 Heater Out Compressor 4 Heater Out Hot Gas Bypass Output	On/Off On/Off On/Off On/Off On/Off On/Off On/Off On/Off On/Off		CP_B1 CP_B2 CP_B3 CP_B4 cp_b1_ht cp_b2_ht cp_b3_ht cp_b4_ht HGBP_V_B	
	Fan Output DO # 1 Fan Output DO # 2 Fan Output DO # 3 Fan Output DO # 4 Fan Output DO # 5 Fan Output DO # 6 Fan Staging Number	On/Off On/Off On/Off On/Off On/Off On/Off O-6		fan_b1 fan_b2 fan_b3 fan_b4 fan_b5 fan_b6 FAN_ST_B	
	4 Way Refrigerant Valve	On/Off		RV_B	

APPENDIX B — CCN TABLES (cont)

STATUS DISPLAY TABLES (cont)

TABLE	DISPLAY NAME	RANGE	UNITS	POINT NAME	WRITE STATUS
CIRCC_AN					
_	Percent Total Capacity	0-100	%	CAPC_T	
	Discharge Pressure	nnn.n	PSI	DP_C	
	Suction Pressure	nnn.n	PSI	SP C	
	Crank Heater Current Cp1	nnn.n	AMPS	cpc1_cur	
	Crank Heater Current Cp2	nnn.n	AMPS	cpc2_cur	
	Crank Heater Current Cp3	nnn.n	AMPS	cpc3 cur	
	Crank Heater Current Cp4	nnn.n	AMPS	cpc4_cur	
			OHMS		
	Motor Thermistor Comp 1	nnnn		cpc1_tmp	
	Motor Thermistor Comp 2	nnnn	OHMS	cpc2_tmp	
	Motor Thermistor Comp 3	nnnn	OHMS	cpc3_tmp	
	Motor Thermistor Comp 4	nnnn	OHMS	cpc4_tmp	
	Saturated Condensing Tmp	±nnn.n	°F	SCT_C	
	Saturated Suction Temp	±nnn.n	∣°F	SST_C	
	Suction Gas Temperature	±nnn.n	°F	SUCT_T_C	
	Suction Superheat Temp	±nnn.n	\rightarrow{.}	SH C	
	EXV Position	0-100	%	EXV_C	
	Head Press Actuator Pos	0-100	%	hd_pos_c	
CIRCO P	1.344 1 1000 7 10 144101 1 00	10.00	1,0	a_poo_o	
CIRCC_D	Compressor 1 Output	l On/Off	i	CP_C1	I
	Compressor 1 Output			10F_01	
	Compressor 2 Output	On/Off		CP_C2	
	Compressor 3 Output	On/Off		CP_C3	
	Compressor 4 Output	On/Off		CP_C4	
	Compressor 1 Heater Out	On/Off		cp_c1_ht	
	Compressor 2 Heater Out	On/Off		cp_c2_ht	
	Compressor 3 Heater Out	On/Off		cp_c3_ht	
	Compressor 4 Heater Out	On/Off		cp_c4_ht	
	Hot Gas Bypass Output	On/Off		HGBP_V_C	
		·	•	•	•
	Fan Output DO # 1	On/Off		fan_c1	
	Fan Output DO # 2	On/Off		fan_c2	
	Fan Output DO # 3	On/Off		fan_c3	
	Fan Output DO # 4	On/Off		fan c4	
	Fan Output DO # 5	On/Off		fan_c5	
	Fan Output DO # 6	On/Off		fan c6	
	Fan Staging Number	0-6		FAN_ST_C	
FANHOURS	0 0	0-0		TAN_01_0	
PANHOURS	FAN Operating Hours Circuit A Fan #1 Hours	l nnnnn	I hours	hr fana1	
	Circuit A Fan #2 Hours	nnnnn	hours	hr_fana2	
	Circuit A Fan #3 Hours	nnnnn	hours	hr_fana3	
	Circuit A Fan #4 Hours	nnnnn	hours	hr_fana4	
	Circuit A Fan #5 Hours	nnnnn	hours	hr_fana5	
	Circuit A Fan #6 Hours	nnnnn	hours	hr_fana6	
	Circuit B Fan #1 Hours	nnnnn	hours	hr_fanb1	
	Circuit B Fan #2 Hours	nnnnn	hours	hr_fanb2	
	Circuit B Fan #3 Hours	nnnnn	hours	hr_fanb3	
	Circuit B Fan #4 Hours	nnnnn	hours	hr_fanb4	
	Circuit B Fan #5 Hours	nnnnn	hours	hr fanb5	
	Circuit B Fan #6 Hours		hours		
		nnnnn		hr_fanb6	
	Circuit C Fan #1 Hours	nnnnn	hours	hr_fanc1	
	Circuit C Fan #2 Hours	nnnnn	hours	hr_fanc2	
	Circuit C Fan #3 Hours	nnnnn	hours	hr_fanc3	
	Circuit C Fan #4 Hours	nnnnn	hours	hr_fanc4	
	Circuit C Fan #5 Hours	nnnnn	hours	hr_fanc5	
	Circuit C Fan #6 Hours	nnnnn	hours	hr_fanc6	
	WATER PUMPS	-	-		
	Water Pump #1 Hours	nnnnn	hours	hr_cpum1	
	Water Pump #2 Hours	nnnnn	hours	hr_cpum2	
	Heat Reclaim Pump Hours		hours		
	· ·	nnnnn	Tiouis	hr_hpump	
	FREE COOLING PUMPS			lan fam.	
	Circuit A Pump Hours	nnnnn	hours	hr_fcp_a	
	Circuit B Pump Hours	nnnnn	hours	hr_fcp_b	
	Circuit C Pump Hours	nnnnn	hours	hr_fcp_c	

STATUS DISPLAY TABLES (cont)

TABLE	DISPLAY NAME	RANGE	UNITS	POINT NAME	WRITE STATUS
FREECOOL	GENERAL PARAMETER				
	Free Cooling Disable?	Yes/No		FC SW	
	LWT-OAT Delta	nnn.n	^F	fc_delta	
	Current Cooling Power	nnn	KW	cool_pwr	
	Estimated FreeCool Power	nnn	KW	fc_pwr	
	Next session allowed in	nn	min	fc_next	
	Cooling/FreeCool Timeout	nn	min	fc_tmout	
	Free Cool Conditions OK?	Yes/No		fc_ready	
	Free Cool Request ?	Yes/No		fc_regst	
	Valve Actuator Heaters ?	On/Off		FC_HTR	
	CIRCUIT A			_	
	Free Cooling Active	Yes/No		fc_on_a	
	Fan Staging Number	1-6		FAN ST A	
	3 Way Valve Position	nnn	%	fc_vlv_a	
	3 Way Valve Status	text*		FC_VLV_A	
	Refrigerant Pump Out	On/Off		fc_pmp_a	
	Pump Inlet Pressure	nnn	PSI	fc_inp_a	
	Pump Outlet Pressure	nnn	PSI	fc_oup_a	
	Pump Differential Pressure	nnn	PSI	fc_dp_a	
	CIRCUIT B				
	Free Cooling Active	Yes/No		fc_on_b	
	Fan Staging Number	1-6		FAN ST B	
	3 Way Valve Position	nnn	%	fc_vlv_b	
	3 Way Valve Status	text*		FC_VLV_B	
	Refrigerant Pump Out	On/Off		fc_pmp_b	
	Pump Inlet Pressure	nnn	PSI	fc_inp_b	
	Pump Outlet Pressure	nnn	PSI	fc_oup_b	
	Pump Differential Pressure	nnn	PSI	fc_dp_b	

^{*} Text reflects status of valve "Closed," "Closing," "Opened," "Opening," "Stopped," or "Failed."

APPENDIX B — CCN TABLES (cont) STATUS DISPLAY TABLES (cont)

TABLE	DISPLAY NAME	RANGE	UNITS	POINT NAME	WRITE STATUS
GENUNIT	GENERAL PARAMETER				
	Control Type	Local		ctr_type	
		CCN			
		Remote			
	Run Status	0 = Off		STATUS	
		1 = Running			
		2 = Stopping 3 = Delay			
		4 = Tripout			
		5 = Ready			
		6 = Override			
		7 = Defrost			
		8 = Run Test			
		9 = Test		l	
	CCN Chiller Start/Stop	Enable/Disable		CHIL_S_S	forcible
	Chiller Occupied?	Yes/No	1.	CHIL_OCC	forcible
	Minutes Left for Start	0-15	min	min_left	
	Heat/Cool Status	0 = Cool, 1 = Heat		HEATCOOL	
		2 = Stand-by 3 = Both			
	Heat/Cool Select (0=Cool, 1=Heat,	0 = Cool		HC_SEL	forcible
	2= Auto)	1 = Heat		INC_SEL	lorcible
	(Auto)	2 = Auto			
	Heat Reclaim Select	Yes/No		RECL SEL	forcible
	Free Cooling Disable	Yes/No		FC_DSBLE	13.3.3.3
	Alarm State	0 Normal		ALM	
	, admir otato	1 Partial			
		2 Shutdown			
	Current Alarm 1	nnnnn		alarm_1	
	Current Alarm 2	nnnnn		alarm_2	
	Current Alarm 3	nnnnn		alarm_3	
	Current Alarm 4	nnnnn		alarm_4	
	Current Alarm 5	nnnnn		alarm_5	
	Percent Total Capacity	nnn	%	CAP_T	
	Active Demand Limit Val	nnn	%	DEM_LIM	forcible
	Lag Capacity Limit Value	nnn	%	LAG_LIM	
	Current Setpoint	±nnn.n	°F	SP	
	Setpoint Occupied	Yes/No		SP_OCC	forcible
	Setpoint Control	Setpt 1		sp_ctrl	
		Setpt 2		op_o	
		lce_sp			
		4-20mA			
		Auto			
	Control Point	±nnn.n	°F	CTRL_PNT	forcible
	Controlled Water Temp	±nnn.n	°F	CTRL_WT	
	External Temperature	±nnn.n	°F	OAT	
	Emergency Stop	Enable/Disable		EMSTOP	forcible
MODES	OPERATING MODES				
	Startup Delay in Effect	Yes/No		Mode 01	
	Second Setpoint in Use	Yes/No		Mode_02	
	Reset in Effect	Yes/No		Mode_03	
	Demand Limit Active	Yes/No		Mode_04	
	Ramp Loading Active	Yes/No		Mode_05	
	Cooler Heater Active	Yes/No		Mode_06	
	Cooler Pumps Rotation Pump Periodic Start	Yes/No		Mode_07	
		Yes/No Yes/No		Mode_08 Mode_09	
	I Night Low Noice Active			INIOUE_09	
	Night Low Noise Active			Mode 1()	
	System Manager Active	Yes/No		Mode_10	
	System Manager Active Master Slave Active	Yes/No Yes/No		Mode_11	
	System Manager Active Master Slave Active Auto Changeover Active	Yes/No		Mode_11 Mode_12	
	System Manager Active Master Slave Active Auto Changeover Active Free Cooling Active Reclaim Active	Yes/No Yes/No Yes/No		Mode_11 Mode_12 Mode_13 Mode_14	
	System Manager Active Master Slave Active Auto Changeover Active Free Cooling Active Reclaim Active Electric Heat Active	Yes/No Yes/No Yes/No Yes/No Yes/No Yes/No		Mode_11 Mode_12 Mode_13 Mode_14 Mode_15	
	System Manager Active Master Slave Active Auto Changeover Active Free Cooling Active Reclaim Active Electric Heat Active Heating Low EWT Lockout	Yes/No Yes/No Yes/No Yes/No Yes/No Yes/No Yes/No		Mode_11 Mode_12 Mode_13 Mode_14 Mode_15 Mode_16	
	System Manager Active Master Slave Active Auto Changeover Active Free Cooling Active Reclaim Active Electric Heat Active Heating Low EWT Lockout Boiler Active	Yes/No Yes/No Yes/No Yes/No Yes/No Yes/No Yes/No Yes/No		Mode_11 Mode_12 Mode_13 Mode_14 Mode_15 Mode_16 Mode_17	
	System Manager Active Master Slave Active Auto Changeover Active Free Cooling Active Reclaim Active Electric Heat Active Heating Low EWT Lockout Boiler Active Ice Mode in Effect	Yes/No Yes/No Yes/No Yes/No Yes/No Yes/No Yes/No Yes/No Yes/No		Mode_11 Mode_12 Mode_13 Mode_14 Mode_15 Mode_16 Mode_17 Mode_18	
	System Manager Active Master Slave Active Auto Changeover Active Free Cooling Active Reclaim Active Electric Heat Active Heating Low EWT Lockout Boiler Active Ice Mode in Effect Defrost Active On Cir A	Yes/No		Mode_11 Mode_12 Mode_13 Mode_14 Mode_15 Mode_16 Mode_17 Mode_18 Mode_19	
	System Manager Active Master Slave Active Auto Changeover Active Free Cooling Active Reclaim Active Electric Heat Active Heating Low EWT Lockout Boiler Active Ice Mode in Effect Defrost Active On Cir A Defrost Active On Cir B	Yes/No		Mode_11 Mode_12 Mode_13 Mode_14 Mode_15 Mode_16 Mode_17 Mode_18 Mode_19 Mode_20	
	System Manager Active Master Slave Active Auto Changeover Active Free Cooling Active Reclaim Active Electric Heat Active Heating Low EWT Lockout Boiler Active Ice Mode in Effect Defrost Active On Cir A Defrost Active On Cir B Low Suction Circuit A	Yes/No		Mode_11 Mode_12 Mode_13 Mode_14 Mode_15 Mode_16 Mode_17 Mode_18 Mode_19 Mode_20 Mode_21	
	System Manager Active Master Slave Active Auto Changeover Active Free Cooling Active Reclaim Active Electric Heat Active Heating Low EWT Lockout Boiler Active Ice Mode in Effect Defrost Active On Cir A Defrost Active On Cir B	Yes/No		Mode_11 Mode_12 Mode_13 Mode_14 Mode_15 Mode_16 Mode_17 Mode_18 Mode_19 Mode_20 Mode_21 Mode_21 Mode_22	
	System Manager Active Master Slave Active Auto Changeover Active Free Cooling Active Reclaim Active Electric Heat Active Heating Low EWT Lockout Boiler Active Ice Mode in Effect Defrost Active On Cir A Defrost Active On Cir B Low Suction Circuit A Low Suction Circuit C High DGT Circuit A	Yes/No		Mode_11 Mode_12 Mode_13 Mode_14 Mode_15 Mode_16 Mode_17 Mode_18 Mode_19 Mode_20 Mode_21	
	System Manager Active Master Slave Active Auto Changeover Active Free Cooling Active Reclaim Active Electric Heat Active Heating Low EWT Lockout Boiler Active Ice Mode in Effect Defrost Active On Cir A Defrost Active On Cir B Low Suction Circuit A Low Suction Circuit C High DGT Circuit A High DGT Circuit B	Yes/No		Mode_11 Mode_12 Mode_13 Mode_14 Mode_15 Mode_16 Mode_17 Mode_18 Mode_19 Mode_20 Mode_21 Mode_22 Mode_22 Mode_22 Mode_23 Mode_24 Mode_24 Mode_25	
	System Manager Active Master Slave Active Auto Changeover Active Free Cooling Active Reclaim Active Electric Heat Active Heating Low EWT Lockout Boiler Active Ice Mode in Effect Defrost Active On Cir A Defrost Active On Cir B Low Suction Circuit A Low Suction Circuit B Low Suction Circuit C High DGT Circuit A High DGT Circuit B High DGT Circuit C	Yes/No		Mode_11 Mode_12 Mode_13 Mode_14 Mode_15 Mode_16 Mode_17 Mode_18 Mode_19 Mode_20 Mode_21 Mode_22 Mode_23 Mode_23 Mode_24 Mode_25 Mode_25 Mode_26	
	System Manager Active Master Slave Active Auto Changeover Active Free Cooling Active Reclaim Active Electric Heat Active Heating Low EWT Lockout Boiler Active Ice Mode in Effect Defrost Active On Cir A Defrost Active On Cir B Low Suction Circuit A Low Suction Circuit B Low Suction Circuit C High DGT Circuit C High DGT Circuit C High Pres Override Cir A	Yes/No		Mode_11 Mode_12 Mode_13 Mode_14 Mode_15 Mode_16 Mode_17 Mode_18 Mode_19 Mode_20 Mode_21 Mode_22 Mode_23 Mode_23 Mode_24 Mode_25 Mode_26 Mode_26 Mode_27	
	System Manager Active Master Slave Active Auto Changeover Active Free Cooling Active Reclaim Active Electric Heat Active Heating Low EWT Lockout Boiler Active Ice Mode in Effect Defrost Active On Cir A Defrost Active On Cir B Low Suction Circuit A Low Suction Circuit C High DGT Circuit A High DGT Circuit C High Pres Override Cir A High Pres Override Cir B	Yes/No		Mode_11 Mode_12 Mode_13 Mode_14 Mode_15 Mode_16 Mode_17 Mode_18 Mode_19 Mode_20 Mode_21 Mode_22 Mode_22 Mode_23 Mode_24 Mode_25 Mode_25 Mode_26 Mode_27 Mode_27 Mode_28	
	System Manager Active Master Slave Active Auto Changeover Active Free Cooling Active Reclaim Active Electric Heat Active Heating Low EWT Lockout Boiler Active Ice Mode in Effect Defrost Active On Cir A Defrost Active On Cir B Low Suction Circuit A Low Suction Circuit B Low Suction Circuit C High DGT Circuit B High DGT Circuit C High Pres Override Cir A High Pres Override Cir B High Pres Override Cir C	Yes/No		Mode_11 Mode_12 Mode_13 Mode_14 Mode_15 Mode_16 Mode_17 Mode_18 Mode_19 Mode_20 Mode_21 Mode_22 Mode_22 Mode_23 Mode_24 Mode_25 Mode_26 Mode_26 Mode_27 Mode_28 Mode_29	
	System Manager Active Master Slave Active Auto Changeover Active Free Cooling Active Reclaim Active Electric Heat Active Heating Low EWT Lockout Boiler Active Ice Mode in Effect Defrost Active On Cir A Defrost Active On Cir B Low Suction Circuit A Low Suction Circuit C High DGT Circuit A High DGT Circuit C High Pres Override Cir A High Pres Override Cir B	Yes/No		Mode_11 Mode_12 Mode_13 Mode_14 Mode_15 Mode_16 Mode_17 Mode_18 Mode_19 Mode_20 Mode_21 Mode_22 Mode_22 Mode_23 Mode_24 Mode_25 Mode_25 Mode_26 Mode_27 Mode_27 Mode_28	

STATUS DISPLAY TABLES (cont)

TABLE	DISPLAY NAME	RANGE	UNITS	POINT NAME	WRITE STATUS
RECLAIM	Heat Reclaim Select	Yes/no		RECL_SEL	
	Reclaim Condenser Pump	On/Off		CONDPUMP	
	Reclaim Condenser Flow	On/Off		condflow	
	Reclaim Condenser Heater	On/Off		cond_htr	
	Reclaim Entering Fluid	±nnn.n	°F °F	HR_EWT	
	Reclaim Leaving Fluid	±nnn.n	l°F	HR_LWT	
	Reclaim Fluid Setpoint	±nnn.n	l∘F	RSP	forcible
	Reclaim Valve Position	±nnn.n	%	hr_v_pos	
	HEAT RECLAIM CIRCUIT A			,	
	Reclaim Status Circuit A	n*		hrstat a	
	Pumpdown Pressure Cir A	±nnn.n	nsi	PD_P_A	
	Sub Condenser Temp Cir A	±nnn.n	psi °F °F ^F	hr_subta	
	Pumdown Saturated Tmp A	±nnn.n	l∘Ė	hr_sat_a	
	Subcooling Temperature A	±nnn.n	^E	hr_subca	
	Air Cond Entering Valv A	On/Off	'	hr_ea_a	
	Water Cond Enter Valve A	On/Off		hr_ew_a	
	Air Cond Leaving Valve A	On/Off		hr_la_a	
	Water Cond Leaving Val A	On/Off			
	HEAT RECLAIM CIRCUIT B	On/On		hr_lw_a	
	Reclaim Status Circuit B	n*		hrotat h	
				hrstat_b	
	Pumpdown Pressure Cir B	±nnn.n	psi °F °F ^F	PD_P_B	
	Sub Condenser Temp Cir B	±nnn.n	- E	hr_subtb	
	Pumdown Saturated Tmp B	±nnn.n	JE	hr_sat_b	
	Subcooling Temperature B	±nnn.n	^ -	hr_subcb	
	Air Cond Entering Valv B	On/Off		hr_ea_b	
	Water Cond Enter Valve B	On/Off		hr_ew_b	
	Air Cond Leaving Valve B	On/Off		hr_la_b	
	Water Cond Leaving Val B	On/Off		hr_lw_b	
STATEGEN	UNIT DISCRETE IN				
	On/Off – Remote Switch	l Open/Close	1	I ONOFF SW	1
	Remote Heat/Cool Switch	Open/Close		HC_SW	
	Current Control	Off, On Cool, On		on_ctrl	
		Heat, On Auto			
	Remote Reclaim Switch	Open/Close		RECL SW	
	Free Cooling Disable Sw.	Open/close		FC_SW	
	Remote Setpoint Switch	Open/Close		SETP_SW	
	Limit Switch 1 Status	Open/Close		LIM SW1	
	Limit Switch 2 Status	Open/Close		LIM_SW2	
	Occupied Override Switch	Open/Close		OCC_OVSW	
	Ice Done Storage Switch	Open/Close		ICE SW	
	Interlock Status	Open/Close		LOCK_1	
				DUMP DEE	
	Pump Run Status	Open/Close		PUMP_DEF	
	Remote Interlock Status	Open/Close		REM_LOCK	
	Electrical Box Safety	Open/Close		ELEC_BOX	
	UNIT DISCRETE OUT			.=	
	Electrical Heat Stage	0-4/Off		EHS_STEP	
	Boiler Command	On/Off		BOILER	
	Water Pump #1 Command	On/Off		CPUMP_1	forcible
	Water Pump #2 Command	On/Off		CPUMP_2	forcible
	Rotate Pumps Now	Yes/No		ROT_PUMP	forcible
	Reclaim Condenser Pump	On/Off		COND PMP	forcible
	Cooler Heater Command	On/Off		COOLHEAT	
	Shutdown Indicator State	On/Off		SHUTDOWN	
	Alarm Relay Status	On/Off		ALARMOUT	
	Alert Relay Status	On/Off		ALERT	
	Ready or Running Status	On/Off		READY	
	Running Status	On/Off		RUNNING	
	Critical Alarm Status	On/Off		CRITICAL	
		OII/OII		OHITIOAL	1
	UNIT ANALOG	Limmor	1 o r	L []\A/T	1
	Water Exchanger Entering	±nnn.n	°F °F	EWT	
	Water Exchanger Leaving	±nnn.n	"	LWT	
	Optional Space Temp	±nnn.n	°F	SPACETMP	
	CHWS Temperature	±nnn.n	°F	CHWSTEMP	
	Reset /Setpoint 4-20mA In	±nn.n	ma	SP_RESET	
			lmo	LIM_ANAL	1
	Limit 4-20mA Signal Chiller Capacity Signal	±nn.n	ma volts	CAPT_010	

^{*} See Table 39, "CCN Table Status Display—RECLAIM" on page 50.

STATUS DISPLAY TABLES (cont)

TABLE	DISPLAY NAME	RANGE	UNITS	POINT NAME	WRITE STATUS
STRTHOUR	Machine Operating Hours	nnnnn	hours	HR_MACH	
	Machine Starts Number	nnnnn		st_mach	
	Compressor A1 Hours	nnnnn	hours	HR_CP_A1	
	Compressor A2 Hours	nnnnn	hours	HR_CP_A2	
	Compressor A3 Hours	nnnnn	hours	HR_CP_A3	
	Compressor A4 Hours	nnnnn	hours	HR_CP_A4	
	Compressor A1 Starts	nnnnn		st_cp_a1	
	Compressor A2 Starts	nnnnn		st_cp_a2	
	Compressor A3 Starts	nnnnn		st_cp_a3	
	Compressor A4 Starts	nnnnn		st_cp_a4	
	Compressor B1 Hours	nnnnn	hours	HR_CP_B1	
	Compressor B2 Hours	nnnnn	hours	HR_CP_B2	
	Compressor B3 Hours	nnnnn	hours	HR_CP_B3	
	Compressor B4 Hours	nnnnn	hours	HR_CP_B4	
	Compressor B1 Starts	nnnnn		st_cp_b1	
	Compressor B2 Starts	nnnnn		st_cp_b2	
	Compressor B3 Starts	nnnnn		st_cp_b3	
	Compressor B4 Starts	nnnnn	1.	st_cp_b4	
	Compressor C1 Hours	nnnnn	hours	HR_CP_C1	
	Compressor C2 Hours	nnnnn	hours	HR_CP_C2	
	Compressor C3 Hours	nnnnn	hours	HR_CP_C3	
	Compressor C4 Hours	nnnnn	hours	HR_CP_C4	
	Compressor C1 Starts	nnnnn		st_cp_c1	
	Compressor C2 Starts	nnnnn		st_cp_c2	
	Compressor C4 Starts	nnnnn		st_cp_c3	
	Compressor C4 Starts	nnnnn		st_cp_c4	
	CYCLES				
	Starts Max During 1 Hour	lnn		st_cp_mx	
	Starts/hr From Last 24 h	nn		st_cp_av	
	Circuit A Defrost Number	nnnnn		nb def a	
	Circuit B Defrost Number	nnnnn		nb_def_b	

CONFIGURATION DISPLAY TABLES

TABLE	DISPLAY NAME	RANGE	DEFAULT	UNITS	POINT NAME
ALARMDEF/ ALARMS01	Alarm Routing Control	0 or 1 for each position	00000000		ALRM_CNT
71 2 711111001	Alarm Equipment Priority	0-7	4		EQP TYP
	Comm Failure Retry Time	1-240	10	min	RETRY TM
	Realarm Time	1-255	30	min	RE_ALARM
	Alarm System Name	8 chars	PRO_RBRQ		ALRM_NAM
BRODEFS/ BROCASTS	Activate	0=Unused 1=Broadcast time, date, holiday flag and OAT. 2=For Standalone chiller. Daylight sav- ings time & holiday determination will be done without broadcasting through the bus.	2	_	cenbroad
	OAT Broadcast	imough ino buoi			
	Bus #	0 to 239	0		oatbusnm
	Element #	0 to 239_	0		oatlocad
	DAYLIGHT SAVINGS SELECT ENTERING	Disable/Enable	Disable		dayl_sel
	Month	1 to 12	3		startmon
	Day of week* (1=Monday)	1 to 7	7		startdow
	Week Number of Month† LEAVING	1 to 5	5		startwom
	Month	1 to 12	10		stopmon
	Day of week* (1=Monday)	1 to 7	7		stopdow
	Week Number of Month†	1 to 5	5		stopwom

^{*}Day of week where daylight savings time will occur in the morning (at 2:00 am). In the default setting, daylight savings time occurs on Sunday (7) morning, 1 hour shall be added when entering and 1 hour subtracted when leaving.

[†]Date once selected (from 1) shall occur in the week number entered. 1: If day of week selected is 7 (Sunday) time change will occur the first Sunday (week number 1) in the month. 5: If day of week selected is 7 (Sunday) time change will occur the last Sunday of the month (week number 4 or 5).

CONFIGURATION DISPLAY TABLES (cont)

TABLE	DISPLAY NAME	RANGE	DEFAULT	UNITS	POINT NAME
!CtrID / PD5_RBRQ:	Device Name Description Location	8 chars 24 chars 24 chars	PRO-DIALOG 5 30RB&30RQ		
	Software Part Number Model Number Serial Number Reference Number	16 chars 20 chars 12 chars 24 chars	CSA-SR-20C46xxxx		

TABLE	DISPLAY NAME	RANGE	DEFAULT	UNITS	POINT NAME
DISPCONF	Metric Display on STDU Language Selection 0=English 1=Espanol 2=Francais 3=Portugues 4=English2	Yes/No 0=English 1=Espanol 2=Francais 3=Portugues 4=English2	No 0		DISPUNIT LANGUAGE
FACTORY	Unit Type Unit Capacity* NB Fans on Varifan Cir A† NB Fans on Varifan Cir B† NB Fans on Varifan Cir C† Air Cooled Reclaim Sel Free Cooling Select Electrical Heat Stages Boiler Command Select Power Frequency 60HZ Sel Energy Management Module Hot Gas Bypass Select	1 (Cooling Only), 2 (not supported) 56 to 500 0 to 6 0 to 6 0 to 6 Yes/No Yes/No 1 to 4 Yes/No Yes/No Yes/No Yes/No O-Hot gas bypass valve (not used) 1=Used for Startup only 2=Close Control 3=High Ambient (if High	Unit Dependent Unit Dependent	tons	unit_typ unitsize varfan_a varfan_b varfan_c recl_opt free_opt ehs_sel boil_sel freq_60H emm_nrcp hgbp_sel
	Pro_dialog Display Selec	pressure mode is active, close control shall be active) No=Use ComfortLink display as user interface (factory installed) Yes=Use Pro_dialog synopsis as user interface (not supported)	No (Must be set to No for ComfortLink display)	G	pd4_disp
	Factory Password MCHX Exchanger Select VLT Fan Drive Select VLT Fan Drive RPM Desuperheater Select Dual Speed Fan Select Factory Country Code	O to 150 Yes/No Not Supported Not Supported Not Supported Not Supported Not Supported O-1	111 Unit Dependent 0 0 No No 1 (Must be set to 1 for units manufactured in USA)		fac_pass mchx_sel vlt_sel vlt_rpm desuper dual_fan fac_code
	VFD Voltage for USA Special Demand	208,380,460,575** 0	Unit dependent 0	volts	vfd_volt qm_field

^{*} Enter unit size. This item allows the controls to determine capacity of each compressor and the total number of fans on each circuit based on a compressor arrangement array (can be viewed in table FACTORY2). It is not necessary to enter compressor capacity and number of fans on each circuit. See the Unit Compressor Configuration table on the next page as a reference.

† Number of fans controlled directly by a variable speed fan actuator using 0 to 10 vdc signal or LEN communication. This will enable the controls to determine the remaining discrete fan staging outputs from the total fans on each circuit. Configure to 1 for low ambient head pressure control. Configuration to match number of fans on circuit for HEVCF option.

*** Must be configured to nameplate voltage. Configure 208/230-v units for 208.

units for 208.

UNIT COMPRESSOR CAPACITY (%) CONFIGURATION

30RB UNIT					POINT	NAME (FA	CTORY2 T	ABLE)				
SIZE	cap_a1	cap_a2	cap_a3	cap_a4	cap_b1	cap_b2	cap_b3	cap_b4	cap_c1	cap_c2	cap_c3	cap_c4
060	20	20	0	0	20	0	0	0	0	0	0	0
070	25	25	0	0	20	0	0	0	0	0	0	0
080	20	20	0	0	20	20	0	0	0	0	0	0
090	25	25	0	0	20	20	0	0	0	0	0	0
100	25	25	0	0	25	25	0	0	0	0	0	0
110	25	25	0	0	20	20	20	0	0	0	0	0
120	25	25	0	0	25	25	25	0	0	0	0	0
130	25	25	25	0	20	20	20	0	0	0	0	0
150	25	25	25	0	25	25	25	0	0	0	0	0
160	25	25	25	25	20	20	20	0	0	0	0	0
170	25	25	25	25	25	25	25	0	0	0	0	0
190	25	25	25	25	25	25	25	25	0	0	0	0
210	25	25	25	0	20	20	20	0	25	25	25	0
225	25	25	25	0	25	25	25	0	25	25	25	0
250	25	25	25	0	25	25	25	0	25	25	25	25
275	25	25	25	25	25	25	25	25	25	25	25	0
300	25	25	25	25	25	25	25	25	25	25	25	25

TABLE	DISPLAY NAME	RANGE	DEFAULT	UNITS	POINT NAME
FACTORY2	Compressor A1 Capacity	0 to 99	0		cap_a1
	Compressor A2 Capacity	0 to 99	0		cap_a2
	Compressor A3 Capacity	0 to 99	0		cap_a3
	Compressor A4 Capacity	0 to 99	0		cap_a4
	Compressor B1 Capacity	0 to 99	0		cap_b1
	Compressor B2 Capacity	0 to 99	0		cap_b2
	Compressor B3 Capacity	0 to 99	0		cap_b3
	Compressor B4 Capacity	0 to 99	0		cap_b4
	Compressor C1 Capacity	0 to 99	0		cap_c1
	Compressor C2 Capacity	0 to 99	0		cap_c2
	Compressor C3 Capacity	0 to 99	0		cap_c3
	Compressor C4 Capacity	0 to 99	0		cap_c4
	Circuit A Total Fans NB	0 to 6	0		nb_fan_a
	Circuit B Total Fans NB	0 to 6	0		nb_fan_b
	Circuit C Total Fans NB	0 to 6	0		nb_fan_c
	EXV A Maximum Steps Numb	0/15000	0=EXV not used		exva_max
	EXV B Maximum Steps Numb	0/15000	0		exvb_max
	EXV C Maximum Steps Numb	0/15000	0		exvc_max

NOTES:

1. Compressor capacity will be automatically be determined if unit size entered in FACTORY table matches the values in the unit compressor configuration table.

Total number of fans includes fans controlled by a variable speed fan. This value will be automatically populated if unit size entered in FACTORY table matches the values in the unit compressor configuration table.

CONFIGURATION DISPLAY TABLES (cont)

TABLE	DISPLAY NAME	RANGE	DEFAULT	UNITS	POINT NAME
HOLIDAY/	Holiday Start Month	0-12	0		HOL_MON
HOLDY01S to	Start Day	0-31	0		HOL_DAY
HOLDY16S	Duration (days)	0-99	0		HOL_LEN
MST_SLV	MASTER SLAVE CONTROL				
	Master/Slave Select	0=Disable	0		ms_sel
	0=Disable	1=Master			1
	1=Master	2=Slave			
	2=Slave				
	Master Control Type	1=Local Control	1		ms ctrl
	1=Local Control	2=Remote Control			_
	2=Remote Control	3=CCN Control			
	3=CCN Control				
	Slave Address	1 to 236	2		slv_addr
	Lag Start Timer	2 to 30	10	min	lstr_tim
	Lead/Lag Balance	Yes/No	No		II_bal
	Lead/Lag Balance Delta	40 to 400	168	hours	Il_bal_d
	Lag Unit Pump Control	0=Stop if Unit Stops	0		lag_pump
	0=Stop if Unit Stops	1=Run if Unit Stops			
	1=Run if Unit Stops	·			
	Lead Pulldown Time	0 to 60	0	min	lead_pul
OCCDEFCS/	Timed Override Hours	0-4	0		OVR EXT
OCCPC01S and	Period 1 DOW (MTWTFSSH)	0/1	11111111		DOW1
OCCPC02S	Occupied From	00:00-24:00	00:00		OCCTOD1
	Occupied To	00:00-24:00	24:00		UNOCTOD1
	Period 2 DOW (MTWTFSSH)	0/1	11111111		DOW2
	Occupied From	00:00-24:00	00:00		OCCTOD2
	Occupied To	00:00-24:00	00:00		UNOCTOD2
	Period 3 DOW (MTWTFSSH)	0/1	00000000		DOW3
	Occupied From	00:00-24:00	00:00		OCCTOD3
	Occupied To	00:00-24:00	00:00		UNOCTOD3
	Period 4 DOW (MTWTFSSH)	0/1	00000000		DOW4
	Occupied From	00:00-24:00	00:00		OCCTOD4
	Occupied To	00:00-24:00	00:00		UNOCTOD4
	Period 5 DOW (MTWTFSSH)	0/1	00000000		DOW5
	Occupied From	00:00-24:00	00:00		OCCTOD5
	Occupied To	00:00-24:00	00:00		UNOCTOD5
	Period 6 DOW (MTWTFSSH)	0/1	00000000		DOW6
	Occupied From	00:00-24:00	00:00		OCCTOD6
	Occupied To	00:00-24:00	00:00		UNOCTOD6
	Period 7 DOW (MTWTFSSH)	0/1	00000000		DOW7
	Occupied From	00:00-24:00	00:00		OCCTOD7
	Occupied To	00:00-24:00	00:00		UNOCTOD7
	Period 8 DOW (MTWTFSSH)	0/1	00000000		DOW8
	Occupied From	00:00-24:00	00:00		OCCTOD8
	Occupied To	00:00-24:00	00:00		UNOCTOD8

CONFIGURATION DISPLAY TABLES (cont)

TABLE	DISPLAY NAME	RANGE	DEFAULT	UNITS	POINT NAME
ISER	Circuit Loading Sequence 0=Auto,1=A Lead 2=B Lead, 3 =C Lead	0-3 0=Auto, 1=A Lead	0		lead_cir
	Staged Loading Sequence Ramp Loading Select Unit Off to On Delay	2=B Lead, 3 =C Lead No/Yes No/Yes 1-15	No No 1	Min	seq_typ ramp_sel off_on_d
	Cooler Pumps Sequence 0=No Pump 1=One Pump Only 2=Two Pumps Auto 3=Pump#1 Manual 4=Pump#2 Manual	0-4 0=No Pump 1=One Pump Only 2=Two Pumps Auto 3=Pump#1 Manual 4=Pump#2 Manual	0		pump_seq
	Pump Auto Rotation Delay Pump Sticking Protection Stop Pump During Standby Flow Checked if Pump Off Auto Changeover Select Cooling Reset Select	24-3000 No/Yes No/Yes No/Yes No/Yes 0-4	48 No No Yes No 0	hours	pump_del pump_per pump_sby pump_loc auto_sel cr_sel
	Heating Reset Select 1 =OAT, 0=None 2=Delta T, 3=4-20mA Control 4=Space Temp Demand Limit Type Select	1 =OAT, 0=None 2=Delta T, 3=4-20mA Control 4=Space Temp 0-2	0		hr_sel
	0=None 1=Switch Control 2=4-20mA Control mA For 100% Demand Limit	0=None 1=Switch Control 2=4-20mA Control 0-20	0	ma	lim_mx
	mA For 0% Demand Limit Heating OAT Threshold Boiler OAT Threshold Free Cooling OAT Threshold	0-20 -4-32 5-59 -4-37.4 -4-37.4	0 5 14 32 32.0	ma °F °F °F °F	lim_ze heat_th boil_th free_oat free th
	Full Load Timeout Pre_Cooling Selected HSM Both Command Select Elec Stage OAT Threshold 1 Elec Stage for backup	5-60 No/Yes No/Yes 23-70 No/Yes	15 No No 41 No	min °F	fc_tmout pre_cool both_sel ehs_th ehs_back
	Electrical Pulldown Time Quick EHS for Defrost Night control	0-60 No/Yes	0 No	min	ehs_pull ehs_defr
	Start Hour End Hour Capacity Limit Ice Mode Enable Menu Description Select Pass For All User Config	00:00-24:00 00:00-24:00 0-100 No/Yes No/Yes No/Yes	00:00 00:00 100 No Yes No	%	nh_start nh_end nh_enfg ice_enfg menu_des all_pass

NOTES:

 Flow checked if pump off needed when a command is sent to the primary pump to prevent cooler from freezing in winter condi-tions. Command will set the cooler flow switch to closed while the controls stop the cooler pump. The controls may then generate an alarm. If this decision is active, the cooler flow switch is not checked when the cooler pump is stopped.

2. If cooling reset select set point has been selected the set point based on 4 to 20 mA input signal through *Comfort*Link controls,

then a 4 to 20 mA reset function shall be ignored. Configuration 3 (4-20mA Control) and 4 (Space Temperature) shall require an Energy Management Module.

3. Configuration 2 (4-20mA Control) shall require an Energy Management Module. Configuration 1 Switch Demand limit provides 3 step demand limit if an Energy Management Module is present. Otherwise, only one step is allowed.

SETPOINT DISPLAY TABLES

TABLE	DISPLAY NAME	RANGE	DEFAULT	UNITS	POINT NAME
SETPOINT	COOLING Cooling Setpoint 1 Cooling Setpoint 2 Cooling Ice Setpoinp OAT No Reset Value OAT Full Reset Value Delta T No Reset Value Delta T Full Reset Value Current No Reset Value Current Full Reset Value Space T No Reset Value Space T Full Reset Value Cooling Reset Deg. Value Cooling Ramp Loading	-20.0-78.8 -20.0-78.8 -20.0-32.0 14-125 14-125 0-25 0-20 0-20 14-125 14-125 -30-30 0.2-2.0	44.0 44.0 14.0 14.0 0.0 0.0 0.0 0.0 14.0 14	°F °	csp1 csp2 ice_sp oatcr_no oatcr_fu dt_cr_no dt_cr_fu v_cr_no v_cr_fu spacr_no spacr_fu cr_deg cramp_sp
	HEATING Heating Setpoint 1 Heating Setpoint 2 OAT No Reset Value OAT Full Reset Value Delta T No Reset Value Delta T Full Reset Value Current No Reset Value Current Full Reset Value Heating Reset Deg. Value Heating Ramp Loading	68.0-122.0 68.0-122.0 14-125 14-125 0-25 0-25 0-20 0-20 -30-30 0.2-2.0	100.0 100.0 14.0 14.0 0.0 0.0 0.0 0.0 0.0	°F °F °F °F ^F ^F Ma ma ^F	hsp1 hsp2 oathr_no oathr_fu dt_hr_no dt_hr_fu v_hr_no v_hr_fu hr_deg hramp_sp
	AUTO CHANGEOVER Cool Changeover Setpt Heat Changeover Setpt MISCELLANEOUS Switch Limit Setpoint 1 Switch Limit Setpoint 2 Switch Limit Setpoint 3 Reclaim Setpoint	39-122 32-115 0-100 0-100 0-100 95.0-122.0	75.0 64.0 100 100 100 122.0	°F °F % %	cauto_sp hauto_sp lim_sp1 lim_sp2 lim_sp3 rsp
	Reclaim Deadband Head Setpoint Fan Max Speed	5-27 40.0-122.0 0-100	9.0 95.0 100	^F °F %	hr_deadb head_stp fan_smax

MAINTENANCE DISPLAY TABLES

TABLE	DISPLAY NAME	RANGE	UNITS	POINT NAME WRITE STATUS
DEFROSTM	CIR A DEFROST CONTROL			
	Exchanger Frost Factor	0-100	1%	frost_a
	Next Sequence Allowed in	nnn	min	def_se_a
	Defrost Active?	True/False		mode[19]
	Defrost Temperature	±nnn.n	°F	DEFRT_A
	Defrost Duration	nnn	min	defr_dua
	Fan Sequence Started	n		def_fa_a
	Override State	nn		over_d_a
	Mean SST Calculation	±nnn.n	°F	sst_dm_a
	Delta: OAT - Mean SST	±nnn.n	^F	delt_a
	Reference Delta	±nnn.n	\^F	delt_r_a
	Delta - Reference Delta	±nnn.n	°F	delt_v_a
	Frost Integrator Gain	n.n		fr_int_a
	Defrost Fan Start Cal A	0.00	psi	def_ca_a
	Defrost Fan Offset Cal A	0.00	psi	def_of_a
	CIR B DEFROST CONTROL			
	Exchanger Frost Factor	0-100	%	frost_b
	Next Sequence Allowed in	nnn	min	def_se_b
	Defrost Active?	True/False		mode[20]
	Defrost Temperature	±nnn.n	°F	DEFRT_B
	Defrost Duration	nnn	min	defr_dub
	Fan Sequence Started?	n		def_fa_b
	Override State	nn		over_d_b
	Mean SST calculation	±nnn.n	l° <u>F</u>	sst_dm_b
	Delta: OAT - Mean SST	±nnn.n	<u>^F</u>	delt_b
	Reference Delta	±nnn.n	\ <u>^</u> E	delt_r_b
	Delta - Reference Delta	±nnn.n	^F	delt_v_b
	Frost Integrator Gain	n.n	l .	fr_int_b
	Defrost Fan Start Cal B	0.00	psi	def_ca_b
	Defrost Fan Offset Cal B	0.00	psi	def_of_b

NOTES: Tables for display only. Forcing shall not be supported on this maintenance screen.

APPENDIX B — CCN TABLES (cont) MAINTENANCE DISPLAY TABLES (cont)

FANCTRL Cir A SCT Control Point Cir A SCT Candidate Cir A Fan Drive Power Cir B SCT Control Point Cir B Fan Drive Power Cir B Fan Drive Power Cir C SCT Control Point Cir C SCT Candidate Cir C Fan Drive Power Ci	TATUS
Cir A Fan Drive Version Cir B SCT Control Point Cir C Fan Drive Version Cir C Fan Drive Power Cir C Fan Drive Version Cir C Fan Drive Power Cir C Fan Drive Powe	
Cir A Fan Drive Version Cir B SCT Control Point Cir B Fan Drive Power Cir B Fan Drive Version Cir C SCT Control Point Cir C Fan Drive Version LAST_POR Power On 1: day-mon-year Power Don 1: hour-minute Power On 2: day-mon-year Power Don 1: hour-minute Power On 2: day-mon-year Power Don 2: day-mon-year Power Don 2: day-mon-year Power Don 2: hour-minute Power On 2: day-mon-year Power Don 2: hour-minute Power On 3: day-mon-year Power Don 4: day-mon-year Power Don 5: day-mon-year Power Don 5: day-mon-year Power Don 6: day-mon-ye	
Cir B SCT Candidate	
Cir B SCT Candidate Cir B Fan Drive Version Cir C SCT Control Point Cir C SCT Control Point Cir C SCT Candidate Cir C Fan Drive Version Cir C SCT Candidate Cir C Fan Drive Version Cir C SCT Candidate Cir C Fan Drive Version New Fan Drive Power Cir C Fan Drive Version Cir C Fan Drive Version None Total Capacity Cir C Fan Drive Version Cir C Fan Drive Version None Total Capacity Cir C Fan Drive Version None Total Capacity Cir C Fan Drive Version Cir C Fan Drive Version None Total Capacity Cir C Fan Drive Version Cir C Fan Dri	
Cir B Fan Drive Power	
Cir B Fan Drive Version F Sct. Sp. c	
Cir C SCT Control Point F	
Cir C SCT Candidate	
Cir C Fan Drive Power Cir C Fan Drive Version Innon Itime_of1 Cir C Fan Drive Version Cir C Fan Drive Version Cir C Fan Drive Version Innon Itime_of1 Cir C Fan Drive Version Cooler Pich Cir Drint A Cooler Pich Cir Drint B Cooler Pich Cir Drivt B Cooler Pich Cil Point B Cooler Pich C	
Cir C Fan Drive Version	
Power On 1: day-mon-year	
Power On 1: hour-minute	
PowerDown 1:day-mon-year nnnnnn date_of1	
Power On 2: day-mon-year	
Power On 2: hour-minute	
PowerDown 2:day-mon-year	
Power On 3: day-mon-year nnnnnn late on time, on sit time	
PowerDown 3: hour-minute nnnn date_of3 PowerDown 3:hour-minute nnnn time_of3 PowerDown 3:hour-minute nnnn time_of3 PowerOn 4: day-mon-year nnnnnn date_on4 Power On 4: hour-minute nnnn date_on4 Power On 4: hour-minute nnnn time_of4 PowerDown 4:day-mon-year nnnnnn date_of4 PowerDown 4:hour-minute nnnn time_of4 PowerDown 5:hour-minute nnnn date_of4 PowerOn 5: hour-minute nnnn date_of5 Power On 5: hour-minute nnnn date_of5 PowerDown 5:day-mon-year nnnnnn date_of5 PowerDown 5:day-mon-year nnnnnn date_of5 PowerDown 5:hour-minute nnnn	
PowerDown 3:day-mon-year nnnnnn time_of3	
Power On 4: day-mon-year nnnnnn lime on4 howerDown 4: day-mon-year nnnnnn lime on4 date_of4 lime_of4 howerDown 4:hour-minute nnnnn lime_of4 howerDown 4:hour-minute nnnnn lime_of4 howerOn 5: day-mon-year nnnnnnn lime_of5 howerOn 5: day-mon-year nnnnnn lime_of5 howerDown 5:day-mon-year nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn	
Power On 4: hour-minute PowerDown 4:day-mon-year PowerDown 4:day-mon-year Power On 5: day-mon-year PowerDown 5:day-mon-year PowerDown 5:date_ofs PowerDown 5:date_ofs Power	
PowerDown 4:hour-minute Power On 5: day-mon-year Power On 5: hour-minute Power On 5: hour-minute Power On 5: hour-minute Power On 5: hour-minute PowerDown 5:day-mon-year PowerDown 5:day-mon-year PowerDown 5:hour-minute Average Ctrl Water Temp Differential Water Temp Water Delta T Control Point Reset Amount Controlled Temp Error Actual Capacity Actual Capacity Actual Capacity Innn Current Z Multiplier Val Load/Unload Factor Active Stage Number Active Capacity Override EXV Position Limit Cir A SH Setpoint Circuit A Cooler Exchange DT Cir A Cooler Exchange DT Cir B SH Setpoint Circuit B SH Setpoint Circuit B Cooler Exchange DT Cir B SH Setpoint Circuit B Cooler Exchange DT Cir B Cooler Ex	
Power On 5: day-mon-year nnnnnn nnnnn date_on5 time_on5 date_on5 time_on5 date_on5 time_on5 date_of5 time_of5 LOADFACT Average Ctrl Water Temp	
Power On 5: hour-minute nnnnn nnnnnnnnnn date of 5 date of 5 date of 5 time_of 5 date_of 5 time_of 5 date_of 5 time_of 5 date_of 5 time_of 5 date_of 5 date_of 5 date_of 5 time_of 5 date_of 5 date_	
PowerDown 5:day-mon-year nnnnnn nnnnn date_of5 time_of5	
PowerDown 5:hour-minúte nnnn time_of5	
Average Ctrl Water Temp Differential Water Temp Water Delta T Water Delta T Control Point Reset Amount Controlled Temp Error Actual Capacity Actual Capacity Actual Capacity Limit Current Z Multiplier Val Load/Unload Factor Active Stage Number Active Capacity Override EXV Position Limit Cir A SH Setpoint Circuit A Cooler Exchange DT Cir A Cooler Exchange DT Cir B SH Setpoint Circuit B Cooler Exchange DT Cir B Cooler Finch Ctl Point B Cooler F	h
Differential Water Temp Water Delta T Control Point Reset Amount Controlled Temp Error Actual Capacity Actual Capacity Limit Current Z Multiplier Val Load/Unload Factor Active Stage Number Active Capacity Override EXV Position Limit Cir A SH Setpoint Circuit A Cooler Exchange DT Cir B EXV Override Circuit B Cooler Exchange DT Cir B Cooler Pinch Ctl Point B Cooler Pinc	
Water Delta T Control Point Reset Amount Controlled Temp Error Actual Capacity Actual Capacity Limit Current Z Multiplier Val Load/Unload Factor Active Stage Number Active Capacity Override EXV Position Limit Cir A SH Setpoint Circuit A Cooler Exchange DT Cir A EXV Position Limit Cir B SH Setpoint Circuit B Cooler Exchange DT Cir B Cooler Finch Cit Point B Cooler Finch Cit Point B Cooler Finch Cit Point B EXV Override Circuit B Inn.n AF Inn	
Control Point Reset Amount Controlled Temp Error Actual Capacity Actual Capacity Limit Current Z Multiplier Val Load/Unload Factor Active Stage Number Active Capacity Override EXV Position Limit Cir A SH Setpoint Circuit A Cooler Exchange DT Cir A EXV Position Limit Cir B EXV Position Limit Cir B SH Setpoint Circuit B Cooler Pinch Circuit B Cooler Exchange DT Cir B Cooler Exchange DT Cir B Cooler Exchange DT Cir B Cooler Pinch Circuit Pinch Circuit B Cooler Pinch Circuit Pinch Circuit Pinch Circuit	
Controlled Temp Error Actual Capacity Actual Capacity Init Current Z Multiplier Val Load/Unload Factor Active Stage Number Active Capacity Override EXV Position Limit Cir A SH Setpoint Circuit A Cooler Exchange DT Cir A EXV Override Circuit A Inn.n EXV Position Limit Cir B SH Setpoint Circuit A Inn.n Active Capacity Override Inn.n Active Capacity Override EXV Position Limit Cir A Inn.n Active Capacity Override Inn.n Active Capacity Inn.n Active Stage Number Inn.n Active Capacity Inn.n I	
Actual Capacity Actual Capacity Limit Current Z Multiplier Val Load/Unload Factor Active Stage Number Active Capacity Override EXV Position Limit Cir A SH Setpoint Circuit A Cooler Exchange DT Cir A Cooler Pinch Ctl Point A EXV Override Circuit A EXV Position Limit Cir B SH Setpoint Circuit A Cooler Exchange DT Cir A Cooler Exchange DT Cir A Cooler Exchange DT Cir A SH Setpoint Circuit A Cooler Pinch Ctl Point A SH Setpoint Circuit A Cooler Pinch Ctl Point A SH Setpoint Circuit A Cooler Exchange DT Cir B SH Setpoint Circuit B Cooler Exchange DT Cir B Cooler Exchange DT Cir B Cooler Pinch Ctl Point B Nn.n AF pinch_spb Cooler Exchange DT Cir B Nn.n AF pinch_spb Cooler Sy b Covervide Circuit B Nn.n AF pinch_spb Covexv b	
Actual Capacity Limit Current Z Multiplier Val Load/Unload Factor Active Stage Number Active Capacity Override EXV Position Limit Cir A SH Setpoint Circuit A Cooler Exchange DT Cir A EXV Override Circuit A SH Setpoint Circuit A Cooler Pinch Ctl Point A EXV Position Limit Cir B SH Setpoint Circuit B Cooler Exchange DT Cir B Cooler Pinch Ctl Point B Cooler Pinch Ctl Point B Cooler Exchange DT Cir B Cooler Pinch Ctl Point B Cooler Exchange DT Cir B Cooler Pinch Ctl Point B EXV Override Circuit B Cooler Exchange DT Cir B Cooler Exchange DT Cir B Cooler Finch Ctl Point B EXV Override Circuit B Inn.n No Cooler Pinch Ctl Point B Cooler Circuit B Inn.n No Cooler Pinch Ctl Point B Cooler Circuit B Inn.n No Cooler Pinch Ctl Point B Cooler Circuit B Inn.n No Cooler Circuit Circ	
Load/Unload Factor Active Stage Number Active Capacity Override EXV Position Limit Cir A SH Setpoint Circuit A Cooler Exchange DT Cir A Cooler Pinch Ctl Point A EXV Override Circuit A EXV Position Limit Cir B SH Setpoint Circuit A Cooler Exchange DT Cir B Cooler Pinch Ctl Foint B Cooler Pinch Ctl Point B Cooler Pinch Ctl Point B Cooler Pinch Ctl Point B EXV Override Circuit B Cooler Pinch Ctl Point B Cooler Pinch Ctl Point B EXV Override Circuit B Cooler Pinch Ctl Point B EXV Override Circuit B Cooler Pinch Ctl Point B EXV Override Circuit B Cooler Pinch Ctl Point B EXV Override Circuit B Overve b Smz cur_stag cur_stag over_cap **Capacity Override* **A **F **Innn.n **F **P **P **P **P **P **P **	
Active Stage Number Active Capacity Override nn cur_stag over_cap EXV Position Limit Cir A nn.n % exvlim_a sh_sp_a nn.n	
Active Capacity Override nn over_cap EXV Position Limit Cir A nnn.n % exvlim_a SH Setpoint Circuit A nn.n ^F sh_sp_a Cooler Exchange DT Cir A nn.n ^F pinch_a Cooler Pinch Ctl Point A nn.n ^F pinch_spa EXV Override Circuit A nn ov_exv_a EXV Position Limit Cir B nnn.n % exvlim_b SH Setpoint Circuit B nn.n ^F sh_sp_b Cooler Exchange DT Cir B nn.n ^F pinch_spb Cooler Pinch Ctl Point B nn.n ^F pinch_spb EXV Override Circuit B nn.n ov_exv_b	
SH Setpoint Circuit A Cooler Exchange DT Cir A Cooler Pinch Ctl Point A EXV Override Circuit A EXV Position Limit Cir B SH Setpoint Circuit B Cooler Exchange DT Cir B Cooler Exchange DT Cir B Cooler Pinch Ctl Point B EXV Override Circuit B Cooler Exchange DT Cir B Cooler Exchange DT Cir B Cooler Pinch Ctl Point B EXV Override Circuit B Inn. NF Sh_sp_a pinch_spa ov_exv_a exvlim_b sh_sp_b pinch_b pinch_b pinch_spb ov_exv_b	,
SH Setpoint Circuit A Cooler Exchange DT Cir A Cooler Pinch Ctl Point A EXV Override Circuit A EXV Position Limit Cir B SH Setpoint Circuit B Cooler Exchange DT Cir B Cooler Exchange DT Cir B Cooler Pinch Ctl Point B EXV Override Circuit B Cooler Exchange DT Cir B Cooler Pinch Ctl Point B EXV Override Circuit B Inn.n AF Sh_sp_a pinch_spa ov_exv_a exvlim_b sh_sp_b pinch_b pinch_b pinch_spb ov_exv_b	
Cooler Exchange DT Cir A Cooler Pinch Ctl Point A EXV Override Circuit A EXV Position Limit Cir B SH Setpoint Circuit B Cooler Exchange DT Cir B Cooler Exchange DT Cir B Cooler Pinch Ctl Point B EXV Override Circuit B Cooler Circuit B Cooler Pinch Ctl Point B EXV Override Circuit B Inn. AF pinch_a pinch_spa exvlim_b sh_sp_b pinch_b pinch_b pinch_spb ov exv b	
Cooler Pinch Ctt Point A EXV Override Circuit A EXV Position Limit Cir B SH Setpoint Circuit B Cooler Exchange DT Cir B Cooler Pinch Ctt Point B EXV Override Circuit B nn.n ^F pinch_spa ov_exv_a exvlim_b sh_sp_b rn.n ^F pinch_spb pinch_spb pinch_spb ov exv b	
EXV Position Limit Cir B nnn.n % exvlim_b SH Setpoint Circuit B nn.n ^F sh_sp_b Cooler Exchange DT Cir B nn.n ^F pinch_spb Cooler Pinch Ctl Point B nn.n ^F pinch_spb EXV Override Circuit B nn ov exv b	
SH Setpoint Circuit B Cooler Exchange DT Cir B Cooler Pinch Ctl Point B EXV Override Circuit B nn.n nn.n ^F sh_sp_b pinch_b pinch_spb ov exv b	
Cooler Exchange DT Cir B nn.n ^F pinch_b Cooler Pinch Ctl Point B nn.n ^F pinch_spb EXV Override Circuit B nn ov exv b	
Cooler Pinch Ctt Point B nn.n ^F pinch_spb EXV Override Circuit B nn ov exv b	
EXV Override Circuit B nn ov_exv_b EXV Position Limit Cir C nnn.n % exvlim_c exvlim_c	
SH Satorint Circuit C	
TOTTOGROUNT ONCORE OF THILD I'T TAIL AND G	
Cooler Exchange DT Cir C nn.n ^F pinch_c	
EXV Override Circuit C nn ov_exv_c	
EHS Ctrl Override nn over_ehs	
Requested Electric Stage nn eh stage	
Electrical Pulldown? True/False Ehspulld	
Required Cooling Power	
Free Cool Override Cir A Free Cool Override Cir B ov_fc_a ov_fc_b	

MAINTENANCE DISPLAY TABLES (cont)

→ TABLE	DISPLAY NAME	RANGE	UNITS	POINT NAME	WRITE STATUS
MSTSLAVE	MASTER/SLAVE CONTROL				
	Unit is Master or Slave Master Control Type* Master/Slave Ctrl Active Lead Unit is the Slave Chiller State† Slave Chiller Total Cap Lag Start Delay** Lead/Lag Hours Delta* Lead/Lag Changeover?** Lead Pulldown? Master/Slave Error Max Available Capacity?††	Disable/Master/Slave Local/Remote/CCN True/False Master/Slave 0/1/2/3/4/5/6*** 0-100 1-30 ±nnnnn Yes/No Yes/No nn Yes/No	% min hours	mstslv ms_ctrl ms_activ lead_sel slv_stat slv_capt l_strt_d ll_hr_d ll_chang ll_pull ms_error cap_max	

- 6 Communication failure

TABLE	DISPLAY NAME	RANGE	UNITS	POINT NAME	WRITE STATUS
OCCDEFCM/ OCC1PO1S OCC2PO2S	Current Mode (1=occup.) Current Occp Period # Timed-Override in Effect Timed-Override Duration Current Occupied Time Current Unoccupied Time Next Occupied Day Next Occupied Time Next Unoccupied Day Next Unoccupied Time Prev Unoccupied Day Prev Unoccupied Time	0/1 1 to 8 Yes/No 0-4 00:00-23:59 00:00-23:59 Mon-Sun 00:00-23:59 Mon-Sun 00:00-23:59 Mon-Sun 00:00-23:59	hours	MODE PER_NO OVERLAST OVR_HRS STRTTIME ENDTIME NXTOCDAY NXTOCTIM NXTUNDAY NXTUNTIM PRVUNDAY PRVUNDAY	

TABLE	DISPLAY NAME	RANGE	UNITS	POINT NAME	WRITE STATUS
PR_LIMIT	Discharge A Temp Average	±nnn.n	°F	sdt_m_a	
	Discharge A Temp Rate	±nnn.n	^F	sdt_mr_a	
	Discharge A Gas Limit	±nnn.n	°F	sdtlim_a	
	Suction A Temp Average	±nnn.n	°F	sst_m_a	
	Discharge A Tp Average 2	±nnn.n	^F	sdt_m2_a	
	Discharge A Temp Limit2	±nnn.n	^F	sdtlim2a	
	Discharge B Temp Average	±nnn.n	°F	sdt_m_b	
	Discharge B Temp Rate	±nnn.n	^F	sdt_mr_b	
	Discharge B Gas Limit	±nnn.n	°F	sdtlim_b	
	Suction B Temp Average	±nnn.n	°F	sst_m_b	
	Discharge C Temp Average	±nnn.n	°F	sdt_m_c	
	Discharge C Temp Rate	±nnn.n	^F	sdt_mr_c	
	Discharge C Gas Limit	±nnn.n	°F	sdtlim_c	
	Suction C Temp Average	±nnn.n	°F	sst_m_c	

NOTE: Table for display only. Used for Cooling and Heat Pump Compressor Envelope.

TABLE	DISPLAY NAME	RANGE	UNITS	POINT NAME	WRITE STATUS
SERMAINT	Reset Maintenance Alert 1 to 6: reset individually 7: reset all	nn		S_RESET	forcible
	OPERATION WARNINGS 1 — Refrigerant Charge 2 — Water Loop Size	Normal/Low/Disable Normal/Low/Disable		charge_m wloop_m	
	GENERAL SERVICING DELAYS 3 — Pump 1 (days) 4 — Pump 2 (days) 5 — Reclaim Pump (days) 6 — Water Filter (days)	0-1000/Alert/Disable 0-1000/Alert/Disable 0-1000/Alert/Disable 0-1000/Alert/Disable		cpump1_m cpump2_m hpump_m wfilte_m	

119 1115

^{*}Always CCN for the slave chiller.
†Slave chiller chillstat value.
**This decision is consistent for Master chiller only. It shall be set by default to 0 for the slave chiller.
††This item is true when chiller has loaded its total available capacity tonnage.

*** 0 — Off and available
1 — On CCN
2 — Not used
3 — Local mode
4 — Restart after power failure
5 — Shut down due to fault
6 — Communication failure

APPENDIX B — CCN TABLES (cont) SERVICE DISPLAY TABLES

TABLE	DISPLAY NAME	RANGE	DEFAULT	UNITS	POINT NAME	WRITE STATUS
CP_UNABL	Compressor A1 Disable Compressor A2 Disable Compressor A3 Disable Compressor B1 Disable Compressor B2 Disable Compressor B3 Disable Compressor B4 Disable Compressor B4 Disable Compressor C1 Disable Compressor C2 Disable Compressor C3 Disable	No/Yes	No No No No No No No No No No		un_cp_a1 un_cp_a2 un_cp_a3 un_cp_a4 un_cp_b1 un_cp_b2 un_cp_b3 un_cp_b4 un_cp_c1 un_cp_c2	
	Compressor C4 Disable	No/Yes	No		un_cp_c4	

NOTES:

All data will be re-initialized to "NO" at Power on reset on units using pro_dialog display. For ComfortLink display, data shall be saved.

TABLE	DISPLAY NAME	RANGE	DEFAULT	UNITS	POINT NAME	WRITE STATUS
MAINTCFG	MAINTENANCE CONFIG					
	Water Loop Control CPump 1 Ctl Delay (days) CPump 2 Ctl Delay (days) HPump Ctrl Delay (days)		Disable Disable Disable 0 0 0 0		s_alert charge_c wloop_c cpump1_c cpump2_c hpump_c wfilte c	

TABLE	DISPLAY NAME	RANGE	DEFAULT	UNITS	POINT NAME	WRITE STATUS
SERVICE1	Cooler Fluid Type	1-3	1		flui_typ	
	Entering Fluid Control	Yes/No	No		ewt_opt	
	Prop PID Gain Varifan	-20.0-20.0	2.0		hd_pg	
	Int PID Gain Varifan	-5.0-5.0	0.2		hd_ig	
	Deri PID Gain Varifan	-20.0-20.0	0.4		hd_dg	
	EXV A Superheat Setpoint	2.5-54.0	9.0	\^F	sh_sp_a	
	EXV B Superheat Setpoint	2.5-54.0	9.0	^F	sh_sp_b	
	EXV C Superheat Setpoint	2.5-54.0	9.0	^F	sh_sp_c	
	EXV MOP Setpoint	30.8-50.0	50.0	°F	mop_sp	
	High Pressure Threshold	500-640	609	psi ^F	hp_th ·	
	Cooler Heater Delta Spt	1-6	2		heatersp	
	Brine Freeze Setpoint	-20-34	34	°F	lowestsp	
	Minimum LWT Setpoint		38	°F	mini_lwt	
	Auto Start When SM Lost	Enable/Disable	Disable		auto_sm	
	Auto Z Multiplier Setpt	4-10	6		zm_spt	
	Maximum Z Multiplier	1.0-6.0	6.0		hc_zm	
	Recl Valve Min Position	0-50	20	%	min_3w	
	Recl Valve Max Position	20-100	100	%	max_3w	
	User Password	0-150	11	N/A	use_pass	
	Service Password	0-150	88	N/A	ser_pass	
	SPM Board Configuration	0 or 1 for each digit	00001010		spm_conf	
	Maximum Ducted Fan Speed	0-100	100	%	fan_max	

NOTE: This table shall be downloadable at any time. However, modified value shall not be used by tasks until the unit is in OFF state. This shall not apply to the Varifan gains that shall be modified at any time and used immediately by the head pressure control tasks even if the unit is in operation.

Table used to disable compressors for maintenance purposes.
 The capacity control will consider that these compressors (once set to YES) are failed manually (no alarm will appear).

SERVICE DISPLAY TABLES (cont)

TABLE	DISPLAY NAME	RANGE	UNITS	POINT NAME	WRITE STATUS
UPDHRFAN	TABLE TO BE USED FOR RUN TIMES AND START UPDATE IN CASE OF CONTROL RETROFIT				
	FAN Operating Hours Circuit A Fan #1 Hours Circuit A Fan #2 Hours Circuit A Fan #3 Hours Circuit A Fan #4 Hours Circuit A Fan #5 Hours Circuit A Fan #6 Hours Circuit B Fan #1 Hours Circuit B Fan #1 Hours Circuit B Fan #3 Hours Circuit B Fan #4 Hours Circuit B Fan #4 Hours Circuit B Fan #6 Hours Circuit B Fan #1 Hours Circuit B Fan #2 Hours Circuit C Fan #1 Hours Circuit C Fan #1 Hours Circuit C Fan #3 Hours Circuit C Fan #3 Hours Circuit C Fan #4 Hours Circuit C Fan #5 Hours Circuit C Fan #6 Hours Circuit C Fan #6 Hours	nnnnn nnnnn nnnnn nnnnn nnnnn nnnnn nnnn	hours	hr_fana1 hr_fana2 hr_fana3 hr_fana4 hr_fana5 hr_fana6 hr_fanb1 hr_fanb2 hr_fanb3 hr_fanb4 hr_fanb6 hr_fanb6 hr_fanc1 hr_fanc2 hr_fanc3 hr_fanc4 hr_fanc5 hr_fanc5 hr_fanc5	
	WATER PUMP WATER PUMP #1 Hours WATER PUMP #2 Hours Heat Reclaim Pump Hours FREE COOLING PUMPS Free Cool A Pump Hours Free Cool B Pump Hours	nnnnn nnnnn nnnnn nnnnn	hours hours hours hours	hr_cpum1 hr_cpum2 hr_hpump hr_fcp_a hr_fcp_b	
	Free Cool C Pump Hours	nnnnn	hours	hr_fcp_c	

NOTE: This table shall be used for purposes of transplanting the devices on time in the event of a module hardware failure or software upgrade via downloading. It shall be usable only if all items are still null. Afterwards, its access shall be denied.

TABLE	DISPLAY NAME	RANGE	UNITS	POINT NAME	WRITE STATUS
IPDTHOUR	TABLE TO BE USED FOR RUN TIMES UPDATE IN CASE OF CONTROL RETROFIT			N E E	
	Machine Operating Hours	nnnnn	hours	hr mach	
	Machine Starts	nnnnn		st mach	
	Compressor A1 Hours	nnnnn	hours	hr_cp_a1	
	Compressor A2 Hours	nnnnn	hours	hr_cp_a2	
	Compressor A3 Hours	nnnnn	hours	hr_cp_a3	
	Compressor A4 Hours	nnnnn	hours	hr_cp_a4	
	Compressor A1 Starts	nnnnn		st_cp_a1	
	Compressor A2 Starts	nnnnn		st_cp_a2	
	Compressor A3 Starts	nnnnn		st_cp_a3	
	Compressor A4 Starts	nnnnn		st_cp_a4	
	Compressor B1 Hours	nnnnn	hours	hr_cp_b1	
	Compressor B2 Hours	nnnnn	hours	hr_cp_b2	
	Compressor B3 Hours	nnnnn	hours	hr_cp_b3	
	Compressor B4 Hours	nnnnn	hours	hr_cp_b4	
	Compressor B1 Starts	nnnnn		st_cp_b1	
	Compressor B2 Starts	nnnnn		st_cp_b2	
	Compressor B3 Starts	nnnnn		st_cp_b3	
	Compressor B4 Starts	nnnnn		st_cp_b4	
	Compressor C1 Hours	nnnnn	hours	hr_cp_c1	
	Compressor C2 Hours	nnnnn	hours	hr_cp_c2	
	Compressor C3 Hours	nnnnn	hours	hr_cp_c3	
	Compressor C4 Hours	nnnnn	hours	hr_cp_c4	
	Compressor C1 Starts	nnnnn		st_cp_c1	
	Compressor C2 Starts	nnnnn		st_cp_c2	
	Compressor C3 Starts	nnnnn		st_cp_c3	
	Compressor C4 Starts	nnnnn		st_cp_c4	
	Circuit A Defrost Number	nnnnn	1	nb_def_a	
	Circuit B Defrost Number	nnnnn	1	nb_def_b	

NOTE: This table shall be used for purposes of transplanting the devices on time in the event of a module hardware failure or software upgrade via downloading. It shall be usable only if all items are still null. Afterwards, its access shall be denied.

APPENDIX C — CCN ALARM DESCRIPTION

ALARM CODE	ALARM TEXT DESCRIPTION AND CCN MESSAGE
	Thermistor Failure
th-01	Water exchanger Entering Fluid Thermistor
th-02	Water exchanger Leaving Fluid Thermistor
th-03	Circuit A Defrost Thermistor
th-04	Circuit B Defrost Thermistor
th-08	Reclaim Condenser Entering Thermistor
th-09	Reclaim Condenser Leaving Thermistor
th-10	OAT Thermistor
th-11	MASTER/Slave Common Fluid Thermistor
th-12	Circuit A Suction Gas Thermistor
th-13	Circuit B Suction Gas Thermistor
th-14	Circuit C Suction Gas Thermistor
th-18	Circuit A Condenser Subcooling Liquid Thermistor
th-19	Circuit B Condenser Subcooling Liquid Thermistor
th-21	Space Temperature Thermistor
	Pressure Transducer Failure
Pr-01	Circuit A Discharge Transducer
Pr-02	Circuit B Discharge Transducer
Pr-03	Circuit C Discharge Transducer
Pr-04	Circuit A Suction Transducer
Pr-05	Circuit B Suction Transducer
Pr-06	Circuit C Suction Transducer
Pr-07	Circuit A Reclaim Pumpdown Pressure Transducer
Pr-08	Circuit B Reclaim Pumpdown Pressure Transducer
	Communication with Slave Board Failure
Co-A1	Loss of communication with Compressor Board A1
Co-A2	Loss of communication with Compressor Board A2
Co-A3	Loss of communication with Compressor Board A3
Co-A4	Loss of communication with Compressor Board A4
Co-B1	Loss of communication with Compressor Board B1
Co-B2	Loss of communication with Compressor Board B2
Co-B3	Loss of communication with Compressor Board B3
Co-B4	Loss of communication with Compressor Board B4
Co-C1	Loss of communication with Compressor Board C1
Co-C2	Loss of communication with Compressor Board C2
Co-C3	Loss of communication with Compressor Board C3
Co-C4	Loss of communication with Compressor Board C4
Co-E1	Loss of communication with EXV Board Number 1
Co-E2	Loss of communication with EXV Board Number 2
Co-F1	Loss of communication with Fan Board Number 1
Co-F2	Loss of communication with Fan Board Number 2
Co-F3	Loss of communication with Fan Board Number 3
Co-O1	Loss of communication with Free Cooling Board
Co-O2	Loss of communication with Electrical Heaters Board
Co-O3	Loss of communication with Energy Management NRCP2 Board
Co-O4	Loss of communication with Heat Reclaim Board
Ct-01	Circuit A Welded Contactor Failure
Ct-02	Circuit B Welded Contactor Failure
Ct-03	Circuit C Welded Contactor Failure

APPENDIX C — CCN ALARM DESCRIPTION (cont)

ALARM CODE	ALARM TEXT DESCRIPTION AND CCN MESSAGE
	Process Failure
FC-n0	No factory configuration
FC-01	Illegal factory configuration Number #1 to nn
MC-nn	Master chiller configuration error Number #1 to nn
P-01	Water Exchanger Freeze Protection
P-05	Circuit A Low Suction Temperature
P-06	Circuit B Low Suction Temperature
P-07	Circuit C Low Suction Temperature
P-08	Circuit A High Superheat
P-09	Circuit B High Superheat
P-10	Circuit C High Superheat
P-11	Circuit A Low Superheat
P-12	Circuit B Low Superheat
P-13	Circuit C Low Superheat
P-14	Cooler Interlock Failure
P-15	Condenser Flow Switch Failure
P-16	Compressor A1 Not Started or Pressure Increase not established
P-17	Compressor A2 Not Started or Pressure Increase not established
P-18	Compressor A3 Not Started or Pressure Increase not established
P-19	Compressor A4 Not Started or Pressure Increase not established
P-20	Compressor B1 Not Started or Pressure Increase not established
P-21	Compressor B2 Not Started or Pressure Increase not established
P-22	Compressor B3 Not Started or Pressure Increase not established
P-23	Compressor B4 Not Started or Pressure Increase not established
P-24	Compressor C1 Not Started or Pressure Increase not established
P-25	Compressor C2 Not Started or Pressure Increase not established
P-26	Compressor C3 Not Started or Pressure Increase not established
P-27	Compressor C4 Not Started or Pressure Increase not established
P-28	Electrical Box Thermostat or Power Reverse Phase Detection
P-29	Loss of communication with System Manager
P-30	Master/Slave communication Failure
P-31	Unit is in CCN emergency stop
P-32	Water pump #1 default
P-33	Water pump #2 default
P-34	Circuit A Reclaim Operation Failure
P-35	Circuit B Reclaim Operation Failure
P-37	Circuit A — Repeated high discharge gas overrides
P-38	Circuit B — Repeated high discharge gas overrides
P-39	Circuit C — Repeated high discharge gas overrides
P-40	Circuit A — Repeated low suction temp overrides
P-41	Circuit B — Repeated low suction temp overrides
P-42	Circuit C — Repeated low suction temp overrides
P-43	Low entering water temperature in heating
P-97	Water Exchanger Temperature Sensors Swapped

APPENDIX C — CCN ALARM DESCRIPTION (cont)

ALARM CODE	ALARM TEXT DESCRIPTION AND CCN MESSAGE
	Service Failure
Sr-nn	Service maintenance alert Number # nn (see Table 49)
-	Compressor Failure
A1-01	Compressor A1 Motor Temperature Too High
A1-02	Compressor A1 Crankcase Heater Failure
A1-03	Compressor A1 High Pressure Switch
A1-04	Compressor A1 Motor Temperature Sensor PTC Out Of Range
A1-05	Compressor A1 Power Reset
A1-06	Compressor A1 Low Control Voltage Alert
A2-01	Compressor A2 Motor Temperature Too High
A2-02	Compressor A2 Crankcase Heater Failure
A2-03	Compressor A2 High Pressure Switch
A2-04	Compressor A2 Motor Temperature Sensor PTC Out Of Range
A2-05	Compressor A2 Power Reset
A2-06	Compressor A2 Low Control Voltage Alert
A3-01	Compressor A3 Motor Temperature Too High
A3-02	Compressor A3 Crankcase Heater Failure
A3-03	Compressor A3 High Pressure Switch
A3-04	Compressor A3 Motor Temperature Sensor PTC Out Of Range
A3-05	Compressor A3 Power Reset
A3-06	-
A3-06 A4-01	Compressor A3 Low Control Voltage Alert
A4-01 A4-02	Compressor A4 Motor Temperature Too High
	Compressor A4 Crankcase Heater Failure
A4-03	Compressor A4 High Pressure Switch
A4-04	Compressor A4 Motor Temperature Sensor PTC Out Of Range
A4-05	Compressor A4 Power Reset
A4-06	Compressor A4 Low Control Voltage Alert
B1-01	Compressor B1 Motor Temperature Too High
B1-02	Compressor B1 Crankcase Heater Failure
B1-03	Compressor B1 High Pressure Switch
B1-04	Compressor B1 Motor Temperature Sensor PTC Out Of Range
B1-05	Compressor B1 Power Reset
B1-06	Compressor B1 Low Control Voltage Alert
B2-01	Compressor B2 Motor Temperature Too High
B2-02	Compressor B2 Crankcase Heater Failure
B2-03	Compressor B2 High Pressure Switch
B2-04	Compressor B2 Motor Temperature Sensor PTC Out Of Range
B2-05	Compressor B2 Power Reset
B2-06	Compressor B2 Low Control Voltage Alert
B3-01	Compressor B3 Motor Temperature Too High
B3-02	Compressor B3 Crankcase Heater Failure
B3-03	Compressor B3 High Pressure Switch
B3-04	Compressor B3 Motor Temperature Sensor PTC Out Of Range
B3-05	Compressor B3 Power Reset
B3-06	Compressor B3 Low Control Voltage Alert
B4-01	Compressor B4 Motor Temperature Too High
B4-02	Compressor B4 Crankcase Heater Failure
B4-03	Compressor B4 High Pressure Switch
B4-04	Compressor B4 Motor Temperature Sensor PTC Out Of Range
B4-05	Compressor B4 Power Reset

APPENDIX C — CCN ALARM DESCRIPTION (cont)

ALARM CODE	ALARM TEXT DESCRIPTION AND CCN MESSAGE
	Compressor Failure
C1-01	Compressor C1 Motor Temperature Too High
C1-02	Compressor C1 Crankcase Heater Failure
C1-03	Compressor C1 High Pressure Switch
C1-04	Compressor C1 Motor Temperature Sensor PTC Out Of Range
C1-05	Compressor C1 Power Reset
C1-06	Compressor C1 Low Control Voltage Alert
C2-01	Compressor C2 Motor Temperature Too High
C2-02	Compressor C2 Crankcase Heater Failure
C2-03	Compressor C2 High Pressure Switch
C2-04	Compressor C2 Motor Temperature Sensor PTC Out Of Range
C2-05	Compressor C2 Power Reset
C2-06	Compressor C2 Low Control Voltage Alert
C3-01	Compressor C3 Motor Temperature Too High
C3-02	Compressor C3 Crankcase Heater Failure
C3-03	Compressor C3 High Pressure Switch
C3-04	Compressor C3 Motor Temperature Sensor PTC Out Of Range
C3-05	Compressor C3 Power Reset
C3-06	Compressor C3 Low Control Voltage Alert
C4-01	Compressor C4 Motor Temperature Too High
C4-02	Compressor C4 Crankcase Heater Failure
C4-03	Compressor C4 High Pressure Switch
C4-04	Compressor C4 Motor Temperature Sensor PTC Out Of Range
C4-05	Compressor C4 Power Reset
C4-06	Compressor C4 Low Control Voltage Alert
V0-xx	Variable Speed Fan Motor Failure, Circuit A
V1-xx	Variable Speed Fan Motor Failure, Circuit B
V2-xx	Variable Speed Fan Motor Failure, Circuit C

APPENDIX D — R-410A PRESSURE VS. TEMPERATURE CHART

PSIG	°F	°C	PSIG	°F	°C	PSIG	°F	°C	PSIG	°F	°C	PSIG	°F	°C	PSIG	°F	°C
12	-37.7	-38.7	114	37.8	3.2	216	74.3	23.5	318	100.2	37.9	420	120.7	49.3	522	137.6	58.7
14	-34.7	-37.1	116	38.7	3.7	218	74.9	23.8	320	100.7	38.2	422	121.0	49.4	524	137.9	58.8
16	-32.0	-35.6	118	39.5	4.2	220	75.5	24.2	322	101.1	38.4	424	121.4	49.7	526	138.3	59.1
18	-29.4	-34.1	120	40.5	4.7	222	76.1	24.5	324	101.6	38.7	426	121.7	49.8	528	138.6	59.2
20	-26.9	-32.7	122	41.3	5.2	224	76.7	24.8	326	102.0	38.9	428	122.1	50.1	530	138.9	59.4
22	-24.5	-31.4	124	42.2	5.7	226	77.2	25.1	328	102.4	39.1	430	122.5	50.3	532	139.2	59.6
24	-22.2	-30.1	126	43.0	6.1	228	77.8	25.4	330	102.9	39.4	432	122.8	50.4	534	139.5	59.7
26	-20.0	-28.9	128	43.8	6.6	230	78.4	25.8	332	103.3	39.6	434	123.2	50.7	536	139.8	59.9
28	-17.9	-27.7	130	44.7	7.1	232	78.9	26.1	334	103.7	39.8	436	123.5	50.8	538	140.1	60.1
30	-15.8	-26.6	132	45.5	7.5	234	79.5	26.4	336	104.2	40.1	438	123.9	51.1	540	140.4	60.2
32	-13.8	-25.4	134	46.3	7.9	236	80.0	26.7	338	104.6	40.3	440	124.2	51.2	544	141.0	60.6
34	-11.9	-24.4	136	47.1	8.4	238	80.6	27.0	340	105.1	40.6	442	124.6	51.4	548	141.6	60.9
36	-10.1	-23.4	138	47.9	8.8	240	81.1	27.3	342	105.4	40.8	444	124.9	51.6	552	142.1	61.2
38	-8.3	-22.4	140	48.7	9.3	242	81.6	27.6	344	105.8	41.0	446	125.3	51.8	556	142.7	61.5
40	-6.5	-21.4	142	49.5	9.7	244	82.2	27.9	346	106.3	41.3	448	125.6	52.0	560	143.3	61.8
42	-4.5	-20.3	144	50.3	10.2	246	82.7	28.2	348	106.6	41.4	450	126.0	52.2	564	143.9	62.2
44	-3.2	-19.6	146	51.1	10.6	248	83.3	28.5	350	107.1	41.7	452	126.3	52.4	568	144.5	62.5
46	-1.6	-18.7	148	51.8	11.0	250	83.8	28.8	352	107.5	41.9	454	126.6	52.6	572	145.0	62.8
48	0.0	-17.8	150	52.5	11.4	252	84.3	29.1	354	107.9	42.2	456	127.0	52.8	576	145.6	63.1
50	1.5	-16.9	152	53.3	11.8	254	84.8	29.3	356	108.3	42.4	458	127.3	52.9	580	146.2	63.4
52	3.0	-16.1	154	54.0	12.2	256	85.4	29.7	358	108.8	42.7	460	127.7	53.2	584	146.7	63.7
54	4.5	-15.3	156	54.8	12.7	258	85.9	29.9	360	109.2	42.9	462	128.0	53.3	588	147.3	64.1
56	5.9	-14.5	158	55.5	13.1	260	86.4	30.2	362	109.6	43.1	464	128.3		592	147.9	64.4
58 60	7.3 8.6	-13.7 -13.0	160 162	56.2 57.0	13.4	262 264	86.9 87.4	30.5	364 366	110.0 110.4	43.3	466 468	128.7 129.0	53.7 53.9	596 600	148.4 149.0	64.7 65.0
62	10.0	-12.2	164	57.7	14.3	266	87.9	31.1	368	110.4	43.8	470	129.0	54.1	604	149.5	65.3
64	11.3	-11.5	166	58.4	14.7	268	88.4	31.3	370	111.2	44.0	472	129.7	54.3	608	150.1	65.6
66	12.6	-10.8	168	59.0	15.0	270	88.9	31.6	370	111.6	44.2	474	130.0	54.4	612	150.1	65.9
68	13.8	-10.1	170	59.8	15.4	272	89.4	31.9	374	112.0	44.4	476	130.3	54.6	616	151.2	66.2
70	15.1	-9.4	172	60.5	15.8	274	89.9	32.2	376	112.4	44.7	478	130.7	54.8	620	151.7	66.5
72	16.3	-8.7	174	61.1	16.2	276	90.4	32.4	378	112.6	44.8	480	131.0	55.0	624	152.3	66.8
74	17.5	-8.1	176	61.8	16.6	278	90.9	32.7	380	113.1	45.1	482	131.3	55.2	628	152.8	67.1
76	18.7	-7.4	178	62.5	16.9	280	91.4	33.0	382	113.5	45.3	484	131.6	55.3	632	153.4	67.4
78	19.8	-6.8	180	63.1	17.3	282	91.9	33.3	384	113.9	45.5	486	132.0	55.6	636	153.9	67.7
80	21.0	-6.1	182	63.8	17.7	284	92.4	33.6	386	114.3	45.7	488	132.3	55.7	640	154.5	68.1
82	22.1	-5.5	184	64.5	18.1	286	92.8	33.8	388	114.7	45.9	490	132.6	55.9	644	155.0	68.3
84	23.2	-4.9	186	65.1	18.4	288	93.3	34.1	390	115.0	46.1	492	132.9	56.1	648	155.5	68.6
86	24.3	-4.3	188	65.8	18.8	290	93.8	34.3	392	115.5	46.4	494	133.3	56.3	652	156.1	68.9
88	25.4	-3.7	190	66.4	19.1	292	94.3	34.6	394	115.8	46.6	496	133.6	56.4	656	156.6	69.2
90	26.4	-3.1	192	67.0	19.4	294	94.8	34.9	396	116.2	46.8	498	133.9	56.6	660	157.1	69.5
92	27.4	-2.6	194	67.7	19.8	296	95.2	35.1	398	116.6	47.0	500	134.0	56.7	664	157.7	69.8
94	28.5	-1.9	196	68.3	20.2	298	95.7	35.4	400	117.0	47.2	502	134.5	56.9	668	158.2	70.1
96	29.5	-1.4	198	68.9	20.5	300	96.2	35.7	402	117.3	47.4	504	134.8	57.1	672	158.7	70.4
98	30.5	-0.8	200	69.5	20.8	302	96.6	35.9	404	117.7	47.6	506	135.2	57.3	676	159.2	70.7
100	31.2	-0.4	202	70.1	21.2	304	97.1	36.2	406	118.1	47.8	508	135.5	57.5	680	159.8	71.0
102	32.2	0.1	204	70.7	21.5	306	97.5	36.4	408	118.5	48.1	510	135.8	57.7	684	160.3	71.3
104	33.2	0.7	206	71.4	21.9	308	98.0	36.7	410	118.8	48.2	512	136.1	57.8	688	160.8	71.6
106	34.1	1.2	208	72.0	22.2	310	98.4	36.9	412	119.2	48.4	514	136.4	58.0	692	161.3	71.8
108	35.1	1.7	210	72.6	22.6	312	98.9	37.2	414	119.6	48.7	516	136.7	58.2	696	161.8	72.1
110	35.5	1.9	212	73.2	22.9	314	99.3	37.4	416	119.9	48.8	518	137.0	58.3			
112	36.9	2.7	214	73.8	23.2	316	99.7	37.6	418	120.3	49.1	520	137.3	58.5			

APPENDIX E — MAINTENANCE SUMMARY AND LOG SHEETS

30RB Maintenance Interval Requirements

	WEEKLY							
Compressor	Check Oil Level.							
0	Check condenser coils for debris, clean as necessary.							
Condenser	Periodic clean water rinse, especially in coastal and industrial applications.							
Controls	Review Alarm/Alert History.							
	MONTHLY							
Cooler	Inspect water pumps.							
Controls	Check accuracy of thermistors, replace if greater than ±2° F (1.2° C) variance from calibrated thermometer.							
	Check accuracy of transducers, replace if greater than ±5 psi (34.47 kPa) variance.							
	Check refrigerant charge level.							
Refrigerant System	Check moisture indicating sight glass for possible refrigerant loss and presence of moisture.							
	Perform leak test.							
	QUARTERLY							
Compressor	Check crankcase heater operation.							
Controls	Check chilled water flow switch operation.							
Condenser	Check all condenser fans for proper operation.							
Refrigerant System	Check all refrigerant joints and valves for refrigerant leaks, repair as necessary.							
Hudronia Custom	Inspect pump seal, if equipped with a hydronic pump package.							
Hydronic System	Lubricate pump motor as required.							
Starter	Inspect all contactors.							
	ANNUALLY							
	Check to be sure that the proper concentration of antifreeze is present in the chilled water loop, if approable.							
Cooler	Verify that the chilled water loop is properly treated.							
	Check chilled water strainers, clean as necessary.							
	Check cooler heater operation, if equipped.							
Condenser	Check condition of condenser fan blades and that they are securely fastened to the motor shaft.							
	Perform Service Test to confirm operation of all components.							
Controls	Check all electrical connections, tighten as necessary.							
	Inspect all contactors and relays, replace as necessary.							
Refrigerant System	Check refrigerant filter driers for excessive pressure drop, replace as necessary.							
Hydronic System Check pump heater operation if equipped.								

NOTE: Equipment failures caused by lack of adherence to the Maintenance Interval Requirements are not covered under warranty.

APPENDIX E — MAINTENANCE SUMMARY AND LOG SHEETS (cont) 30RB Maintenance Log

		CHECK	CHECK		
ATE	OIL LEVEL	CHECK CONDENSER COIL	CHECK ALARMS / FAULTS	OPERATOR INITIALS	REMARKS
		47			

NOTE: Equipment failures caused by lack of adherence to the Maintenance Interval Requirements are not covered under warranty.

APPENDIX E — MAINTENANCE SUMMARY AND LOG SHEETS (cont)

30RB Maintenance Log for Monthly, Quarterly, and Annual Checks

Month			1	2	3	4	5	6	7	8	9	10	11	12
Date			1 1	1 1	1 1	1 1	1 1	1 1	1 1	1 1	11	11	1 1	1 1
Operator														
				-				-		-	-			
UNIT SECTION	ACTION	UNIT						EN	ΓRY					
	Check Oil Level	yes/no												
Compressor	Check Crankcase Heater Operation	yes/no												
	Send Oil Sample Out for Analysis	yes/no												
	Check Cooler Heater Operation	yes/no												
	Check Chiller Water Loop	yes/no												
Cooler	Check Chilled Water Strainers	yes/no												
	Record Water Pressure Differential (PSI)	PSI												
	Inspect Water Pumps	yes/no												
	Inspect and Clean All Coils	yes/no												
Condenser	Check all Condenser Fans for Proper Operation	yes/no												
	Check Condition of Condenser Fan Blades	yes/no												
	General Cleaning and Tightening Connections	yes/no												
	Check Chilled Water Flow Switch Operation	yes/no												
Controls	Perform Service Test	yes/no									L			
	Confirm Accuracy of Pressure Transducers	yes/no												
	Confirm Accuracy of Thermistors	yes/no												
Starter	General Tightening and Cleaning Connections	yes/no												
Starter	Inspect All Contactors	yes/no												
	Check Refrigerant Charge Level	yes/no												
	Verify Operation of EXVs and Record Position	0-100%												
	Record System Superheat	deg. F												
System	Check Moisture Sight Glass	yes/no												
Cystelli	Perform Leak Test	yes/no												
	Check all Refrigerant Joints and Valves for Refrigerant Leaks	yes/no												
	Check Filter Driers	yes/no												

Annually

NOTE: Equipment failures caused by lack of adherence to the Maintenance Interval Requirements are not covered under warranty.

APPENDIX E — MAINTENANCE SUMMARY AND LOG SHEETS (cont)

30RB Seasonal Shutdown Log

Month	1	2	3	4	5	6	7	8	9	10	11	12
Date	1 1	1 1	1 1	1 1	1 1	1 1	1 1	1 1	1 1	1 1	1 1	1 1
Operator												

UNIT SECTION	ACTION			EN	ΓRY			
Cooler	Isolate and Drain Cooler							
Controls	Do Not Disconnect Control Power Unless Cooler is Completely Drained							

- NOTES:

 1. Equipment failures caused by lack of adherence to the Maintenance Interval Requirements are not covered under warranty.

 2. Refer to Installation Instructions for proper Winterization procedure.

The following section is used to configure the UPC Open controller which is used when the BACnet* communication option is selected. The UPC Open controller is mounted in a separate enclosure below the main control box.

TO ADDRESS THE UPC OPEN CONTROLLER — The user must give the UPC Open controller an address that is unique on the BACnet network. Perform the following procedure to assign an address:

- If the UPC Open controller is powered, pull the screw terminal connector from the controller's power terminals labeled Gnd and HOT. The controller reads the address each time power is applied to it.
- 2. Using the rotary switches (see Fig. A and B), set the controller's address. Set the Tens (10's) switch to the tens digit of the address, and set the Ones (1's) switch to the ones digit.

As an example in Fig. B, if the controller's address is 25, point the arrow on the Tens (10's) switch to 2 and the arrow on the Ones (1's) switch to 5.

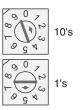


Fig. B — Address Rotary Switches

BACNET DEVICE INSTANCE ADDRESS — The UPC Open controller also has a BACnet Device Instance address. This Device Instance MUST be unique for the complete BACnet system in which the UPC Open controller is installed. The Device Instance is auto generated by default and is derived by adding the MAC address to the end of the Network Number. The Network Number of a new UPC Open controller is 16101, but it can be changed using i-Vu® Tools or BACView device. By default, a MAC address of 20 will result in a Device Instance of 1610120.

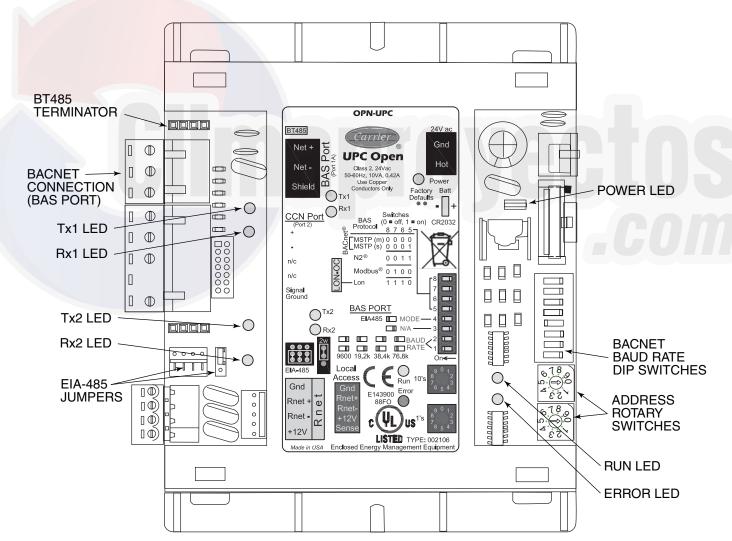


Fig. A — UPC Open Controller

^{*} Sponsored by ASHRAE (American Society of Heating, Refrigerating and Air-Conditioning Engineers).

CONFIGURING THE BAS PORT FOR BACNET MS/TP — Use the same baud rate and communication settings for all controllers on the network segment. The UPC Open controller is fixed at 8 data bits, No Parity, and 1 Stop bit for this protocol's communications.

If the UPC Open controller has been wired for power, pull the screw terminal connector from the controller's power terminals labeled Gnd and HOT. The controller reads the DIP Switches and jumpers each time power is applied to it.

Set the BAS Port DIP switch DS3 to "enable." Set the BAS Port DIP switch DS4 to "E1-485." Set the BMS Protocol DIP switches DS8 through DS5 to "MSTP." See Table A.

Table A — SW3 Protocol Switch Settings for MS/TP

DS8	DS7	DS6	DS5	DS4	DS3
Off	Off	Off	Off	On	Off

Verify that the EIA-485 jumpers below the CCN Port are set to EIA-485 and 2W.

The example in Fig. C shows the BAS Port DIP Switches set for 76.8k (Carrier default) and MS/TP.

Set the BAS Port DIP Switches DS2 and DS1 for the appropriate communications speed of the MS/TP network (9600, 19.2k, 38.4k, or 76.8k bps). See Fig. D and Table B.

Table B — Baud Selection Table

BAUD RATE	DS2	DS1
9,600	Off	Off
19,200	On	Off
38,400	Off	On
76,800	On	On

WIRING THE UPC OPEN CONTROLLER TO THE MS/TP NETWORK — The UPC Open controller communicates using BACnet on an MS/TP network segment communications at 9600 bps, 19.2 kbps, 38.4 kbps, or 76.8 kbps.

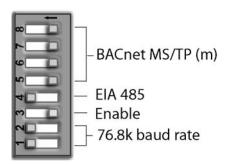


Fig. C — DIP Switches

Wire the controllers on an MS/TP network segment in a daisy-chain configuration. Wire specifications for the cable are 22 AWG (American Wire Gage) or 24 AWG, low-capacitance, twisted, stranded, shielded copper wire. The maximum length is 2000 ft.

Install a BT485 terminator on the first and last controller on a network segment to add bias and prevent signal distortions due to echoing. See Fig. A, D, and E.

To wire the UPC Open controller to the BAS network:

- Pull the screw terminal connector from the controller's BAS Port.
- 2. Check the communications wiring for shorts and grounds.
- 3. Connect the communications wiring to the BAS port's screw terminals labeled Net +, Net -, and Shield.

NOTE: Use the same polarity throughout the network segment.

- Insert the power screw terminal connector into the UPC Open controller's power terminals if they are not currently connected.
- 5. Verify communication with the network by viewing a module status report. To perform a module status report using the BACview keypad/display unit, press and hold the "FN" key then press the "." Key.

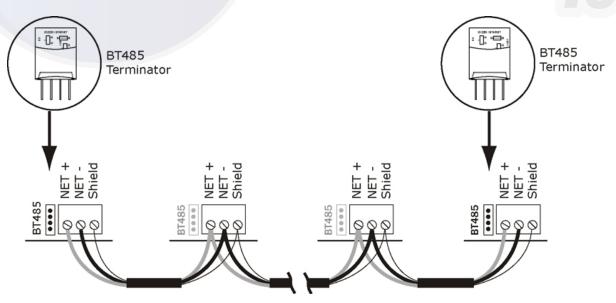


Fig. D — Network Wiring

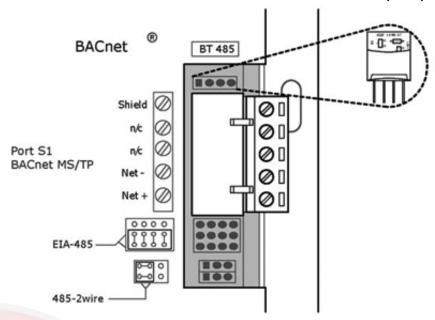


Fig. E — BT485 Terminator Installation

To install a BT485 terminator, push the BT485 terminator on to the BT485 connector located near the BACnet connector. NOTE: The BT485 terminator has no polarity associated with it

To order a BT485 terminator, consult Commercial Products i-Vu Open Control System Master Prices.

MS/TP WIRING RECOMMENDATIONS — Recommendations are shown in Tables C and D. The wire jacket and UL

temperature rating specifications list two acceptable alternatives. The Halar specification has a higher temperature rating and a tougher outer jacket than the SmokeGard specification, and it is appropriate for use in applications where the user is concerned about abrasion. The Halar jacket is also less likely to crack in extremely low temperatures.

NOTE: Use the specified type of wire and cable for maximum signal integrity.

Table C — MS/TP Wiring Recommendations

SPECIFICATION	RECOMMMENDATION					
Cable	Single twisted pair, low capacitance, CL2P, 22 AWG (7x30), TC foam FEP, plenum rated cable					
Conductor	22 or 24 AWG stranded copper (tin plated)					
Insulation	Foamed FEP 0.015 in. (0.381 mm) wall 0.060 in. (1.524 mm) O.D.					
Color Code	Black/White					
Twist Lay	2 in. (50.8 mm) lay on pair 6 twists/foot (20 twists/meter) nominal					
Shielding	Aluminum/Mylar shield with 24 AWG TC drain wire					
Jacket	SmokeGard Jacket (SmokeGard PVC) 0.021 in. (0.5334 mm) wall 0.175 in. (4.445 mm) O.D. Halar Jacket (E-CTFE) 0.010 in. (0.254 mm) wall 0.144 in. (3.6576 mm) O.D.					
DC Resistance	15.2 Ohms/1000 feet (50 Ohms/km) nominal					
Capacitance	12.5 pF/ft (41 pF/meter) nominal conductor to conductor					
Characteristic Impedance	100 Ohms nominal					
Weight	12 lb/1000 feet (17.9 kg/km)					
UL Temperature Rating	SmokeGard 167°F (75°C) Halar -40 to 302°F (-40 to 150°C)					
Voltage	300 Vac, power limited					
Listing	UL: NEC CL2P, or better					

LEGEND

AWG — American Wire Gage
CL2P — Class 2 Plenum Cable
DC — Direct Current

DC — Direct Current
FEP — Fluorinated Ethylene Polymer
NEC — National Electrical Code
O.D. — Outside Diameter
TC — Tinned Copper

UL — Underwriters Laboratories

Table D — Open System Wiring Specifications and Recommended Vendors

	WIRING SPECIFICATIONS	RECOMMENDED VENDORS AND PART NUMBERS				
Wire Type	Description	Connect Air International	Belden	RMCORP	Contractors Wire and Cable	
MS/TP	22 AWG, single twisted shielded pair, low capacitance, CL2P, TC foam FEP, plenum rated. See MS/TP Installation Guide for specifications.	W221P-22227		25160PV	CLP0520LC	
	24 AWG, single twisted shielded pair, low capacitance, CL2P, TC foam FEP, plenum rated. See MS/TP Installation Guide for specifications.	W241P-2000F	82841	25120-OR	_	
Rnet	4 conductor, unshielded, CMP, 18 AWG, plenum rated.	W184C-2099BLB	6302UE	21450	CLP0442	

LEGEND

AWG — American Wire Gage CL2P — Class 2 Plenum Cable

CMP — Communications Plenum Rated FEP — Fluorinated Ethylene Polymer TC — Tinned Copper

LOCAL ACCESS TO THE UPC OPEN CONTROL-LER — The user can use a BACview⁶ handheld keypad display unit or the Virtual BACview software as a local user interface to an Open controller. These items let the user access the controller network information. These are accessory items and do not come with the UPC Open controller.

The BACview⁶ unit connects to the local access port on the UPC Open controller. See Fig. F. The BACview software must be running on a laptop computer that is connected to the local access port on the UPC Open controller. The laptop will require an additional USB link cable for connection.

See the *BACview Installation and User Guide* for instructions on connecting and using the BACview⁶ device.

To order a BACview⁶ Handheld (BV6H), consult Commercial Products i-Vu Open Control System Master Prices.

CONFIGURING THE UPC OPEN CONTROLLER'S PROPERTIES — The UPC Open device and *Comfort*Link control must be set to the same CCN Address (Element)

number and CCN Bus number. The factory default settings for CCN Element and CCN Bus number are 1 and 0 respectively.

If modifications to the default Element and Bus number are required, both the *Comfort*Link and UPC Open configurations must be changed.

The following configurations are used to set the CCN Address and Bus number in the *Comfort*Link control. These configurations can be changed using the scrolling marquee display or accessory Navigator handheld device.

Configuration→**CCN**→**CCN.A** (CCN Address) **Configuration**→**CCN**→**CCN.B** (CCN Bus Number)

The following configurations are used to set the CCN Address and Bus Number in the UPC Open controller. These configurations can be changed using the accessory BACview⁶ display.

Navigation: BACview→CCN Home: Element Comm Stat

Element: 1 Bus: 0



Fig. F — BACview⁶ Device Connection

If the UPC Open is used with the chiller application of Lead/Lag/Standby, all chillers and UPC Open's CCN element numbers must be changed to a unique number in order to follow CCN specifications. In this application, there can only be a maximum of 3 UPC Open controllers on a CCN bus.

For the CCN Alarm Acknowledger configuration, the UPC Open defaults to CCN Acknowledger. If a Chiller Lead/Lag/Standby application is being used, then the Carrier technician must change the configuration to only one CCN Acknowledger on the CCN bus.

For the CCN Time Broadcaster configuration, the UPC Open defaults to CCN Time Broadcaster. If the Chiller Lead/Lag/Standby application is used, then the Carrier technician must change the configuration to only one CCN Time Broadcaster on the CCN bus.

TROUBLESHOOTING — If there are problems wiring or addressing the UPC Open controller, contact Carrier Technical Support.

COMMUNICATION LEDS — The LEDs indicate if the controller is communicating with the devices on the network.

See Tables E and F. The LEDs should reflect communication traffic based on the baud rate set. The higher the baud rate the more solid the LEDs become. See Fig. A for location of LEDs on UPC Open module.

REPLACING THE UPC OPEN BATTERY — The UPC Open controller's 10-year lithium CR2032 battery provides a minimum of 10,000 hours of data retention during power outages.

IMPORTANT: Power must be **ON** to the UPC Open when replacing the battery, or the date, time, and trend data will be lost.

Remove the battery from the controller, making note of the battery's polarity. Insert the new battery, matching the battery's polarity with the polarity indicated on the UPC Open controller.

NETWORK POINTS LIST — The points list for the controller is shown in Table G.

Table E — LED Status Indicators

LED	STATUS
Power	Lights when power is being supplied to the controller. The UPC Open controller is protected by internal solid-state polyswitches on the incoming power and network connections. These polyswitches are not replaceable and will reset themselves if the condition that caused the fault returns to normal.
Rx	Lights when the controller receives data from the network segment; there is an Rx LED for Ports 1 and 2.
Tx	Lights when the controller transmits data to the network segment; there is a Tx LED for Ports 1 and 2.
Run	Lights based on controller status. See Table F.
Error	Lights based on controller status. See Table F.

Table F — Run and Error LEDs Controller and Network Status Indication

RUN LED	ERROR LED	STATUS		
2 flashes per second	Off	Normal		
2 flashes per second	2 flashes, alternating with Run LED	Five minute auto-restart delay after system error		
2 flashes per second	3 flashes, then off	Controller has just been formatted		
2 flashes per second	1 flash per second	Controller is alone on the network		
2 flashes per second	On	Exec halted after frequent system errors or control programs halted		
5 flashes per second	On	Exec start-up aborted, Boot is running		
5 flashes per second	Off	Firmware transfer in progress, Boot is running		
7 flashes per second	7 flashes per second, alternating with Run LED	Ten second recovery period after brownout		
14 flashes per second	14 flashes per second, alternating with Run LED	Brownout		

Table G — Network Points List

POINT DESCRIPTION	CCN POINT NAME	READ/ WRITE	UNITS	DEFAULT VALUE	RANGE	BACNET OBJECT ID	BACNET OBJECT NAME
Active Demand Limit Val	DEM_LIM	R/W	%	N/A	0-100	AV:1	dem_lim_1
Air Cond Entering Valv A	hr_ea_a	R	N/A	N/A	On/Off	BV:4	hr_ea_a_1
Air Cond Entering Valv B	hr_ea_b	R	N/A	N/A	On/Off	BV:5	hr_ea_b_1
Air Cond Leaving Valve A	hr_la_a	R	N/A	N/A	On/Off	BV:6	hr_la_a_1
Air Cond Leaving Valve B	hr_la_b	R	N/A	N/A	On/Off	BV:7	hr_la_b_1
Alarm Relay Status	ALARMOUT	R	N/A	N/A	On/Off	BV:8	alarmout_1
Alarm State	ALM	R	N/A	N/A	0=Normal, 1=Partial, 2=Shutdown	AV:2	alm_1
Alert Relay Status	ALERT	R	N/A	N/A	On/Off	BV:9	alert_1
Auto Changeover Active	Mode_12	R	N/A	N/A	Yes/No	BV:10	mode_12_1
Boiler Active	Mode_17	R	N/A	N/A	Yes/No	BV:11	mode_17_1
Boiler Command	BOILER	R	N/A	N/A	On/Off	BV:12	boiler_1
CCN Chiller Start/Stop	CHIL_S_S	R/W	N/A	N/A	Enable/Disable	BV:1500	chil_s_s_1
Chiller Capacity Signal	CAPT_010	R	volts	N/A	±nn.n	AV:3	capt_010_1
Chiller Occupied?	CHIL_OCC	R	N/A	N/A	Yes/No	BV:1501	chil_occ_1
CHWS Temperature - Prime Variable	CHWSTEMP	R	°F	N/A	±nnn.n	AV:1612	chwstemp_1
Cir A Compressor 1 Heater Out	cp_a1_ht	R	N/A	N/A	On/Off	BV:13	cp_a1_ht_1
Cir A Compressor 1 Output	CP_A1	R	N/A	N/A	On/Off	BV:14	cp_a1_1
Cir A Compressor 2 Heater Out	cp_a2_ht	R	N/A	N/A	On/Off	BV:15	cp_a2_ht_1
Cir A Compressor 2 Output	CP_A2	R	N/A	N/A	On/Off	BV:16	cp a2 1
Cir A Compressor 3 Heater Out	cp_a3_ht	R	N/A	N/A	On/Off	BV:17	cp_a3_ht_1
Cir A Compressor 3 Output	CP A3	R	N/A	N/A	On/Off	BV:18	cp_a3_1
Cir A Compressor 4 Heater Out	cp_a4_ht	R	N/A	N/A	On/Off	BV:19	cp a4 ht 1
Cir A Compressor 4 Output	CP A4	R	N/A	N/A	On/Off	BV:20	cp_a4_1
Cir A Crank Heater Current Cp1	cpa1 cur	R	amps	N/A	nnn.n	AV:4	cpa1_cur_1
Cir A Crank Heater Current Cp2	cpa2 cur	R	amps	N/A	nnn.n	AV:5	cpa2_cur_1
Cir A Crank Heater Current Cp3	cpa3_cur	R	amps	N/A	nnn.n	AV:6	cpa3_cur_1
Cir A Crank Heater Current Cp4	cpa4 cur	R	amps	N/A	nnn.n	AV:7	cpa4_cur_1
Cir A Discharge Pressure	DP_A	R	psi	N/A	nnn.n	AV:1601	dp_a_1
Cir A EXV Position	EXV A	R	%	N/A	0-100	AV:8	exv_a_1
Cir A Fan Output DO # 1	fan a1	R	N/A	N/A	On/Off	BV:21	fan_a1_1
Cir A Fan Output DO # 2	fan a2	R	N/A	N/A	On/Off	BV:22	fan_a2_1
Cir A Fan Output DO # 3	fan a3	R	N/A	N/A	On/Off	BV:23	fan_a3_1
Cir A Fan Output DO # 4	fan a4	R	N/A	N/A	On/Off	BV:24	fan_a4_1
Cir A Fan Output DO # 5	fan_a5	R	N/A	N/A	On/Off	BV:25	fan_a5_1
Cir A Fan Output DO # 6	fan a6	R	N/A	N/A	On/Off	BV:26	fan_a6_1
Cir A Fan Staging Number	FAN_ST_A	R	N/A	N/A	0-6	AV:9	fan_st_a_1
Cir A Head Press Actuator Pos	hd_pos_a	R	%	N/A	0-100	AV:10	hd_pos_a_1
Cir A Hot Gas Bypass Output	HGBP_V_A	R	N/A	N/A	On/Off	BV:27	hgbp_v_a_1
Cir A Motor Thermistor Comp 1	cpa1_tmp	R	ohms	N/A	nnnn	AV:11	cpa1_tmp_1
Cir A Motor Thermistor Comp 2	cpa1_tmp	R	ohms	N/A	nnnn	AV:12	cpa1_tmp_1
Cir A Motor Thermistor Comp 3	cpa3_tmp	R	ohms	N/A	nnnn	AV:12	cpa2_tmp_1
Cir A Motor Thermistor Comp 4	cpa3_tmp	R	ohms	N/A	nnnn	AV:14	cpa3_tmp_1
Cir A Percent Total Capacity	CAPA_T	R	%	N/A	0-100	AV:15	capa_t_1
Cir A Saturated Condensing Tmp	SCT_A	R	°F	N/A	±nnn.n	AV:1602	sct_a_1
Cir A Saturated Condensing Trip Cir A Saturated Suction Temp	SST_A	R	°F	N/A	±nnn.n	AV:1602 AV:1603	sst_a_1
Cir A Suction Gas Temperature	SUCT_T_A	R	°F	N/A	±nnn.n	AV:1603	suct_t_a_1
Cir A Suction Cas Temperature Cir A Suction Pressure	SP_A	R	psi	N/A	±nnn.n	AV:1600	sp_a_1
Cir A Suction Pressure Cir A Suction Superheat Temp	SH_A	R	γsi ^F	N/A	±nnn.n	AV:17	sh_a_1
Cir B Compressor 1 Heater Out	cp_b1_ht	R	N/A	N/A	On/Off	BV:28	cp_b1_ht_1
Cir B Compressor 1 Dutput	CP_B1	R	N/A N/A	N/A N/A	On/Off	BV:28	cp_b1_nt_1
Cir B Compressor 2 Heater Out	cp_b2_ht	R	N/A N/A	N/A	On/Off	BV:30	ср_b1_1 cp_b2_ht_1
Cir B Compressor 2 Output	CP_02_11t	R	N/A N/A	N/A	On/Off		
Cir B Compressor 2 Output Cir B Compressor 3 Heater Out		R	N/A N/A	N/A N/A	On/Off	BV:31 BV:32	cp_b2_1
•	cp_b3_ht	R					cp_b3_ht_1
Cir B Compressor 3 Output	CP_B3	К	N/A	N/A	On/Off	BV:33	cp_b3_1

LEGEND

CCN CHWS DGT DO EWT Carrier Comfort Network
Chilled Water Setpoint
Discharge Gas Temperature
Discrete Output
Entering Water Temperature

EXV OAT R W Electronic Expansion Valve
Outdoor Air Temperature
Read
Write

Table G — Network Points List (cont)

POINT DESCRIPTION	CCN POINT NAME	READ/ WRITE	UNITS	DEFAULT VALUE	RANGE	BACNET OBJECT ID	BACNET OBJECT NAME
Cir B Compressor 4 Heater Out	cp_b4_ht	R	N/A	N/A	On/Off	BV:34	cp_b4_ht_1
Cir B Compressor 4 Output	CP_B4	R	N/A	N/A	On/Off	BV:35	cp_b4_1
Cir B Crank Heater Current Cp1	cpb1_cur	R	amps	N/A	nnn.n	AV:18	cpb1_cur_1
Cir B Crank Heater Current Cp2	cpb2_cur	R	amps	N/A	nnn.n	AV:19	cpb2_cur_1
Cir B Crank Heater Current Cp3	cpb3_cur	R	amps	N/A	nnn.n	AV:20	cpb3_cur_1
Cir B Crank Heater Current Cp4	cpb4_cur	R	amps	N/A	nnn.n	AV:21	cpb4_cur_1
Cir B Discharge Pressure	DP_B	R	psi	N/A	nnn.n	AV:1605	dp_b_1
Cir B EXV Position	EXV_B	R	%	N/A	0-100	AV:22	exv_b_1
Cir B Fan Output DO # 1	fan_b1	R	N/A	N/A	On/Off	BV:36	fan_b1_1
Cir B Fan Output DO # 2	fan_b2	R	N/A	N/A	On/Off	BV:37	fan_b2_1
Cir B Fan Output DO # 3	fan_b3	R	N/A	N/A	On/Off	BV:38	fan_b3_1
Cir B Fan Output DO # 4	fan_b4	R	N/A	N/A	On/Off	BV:39	fan_b4_1
Cir B Fan Output DO # 5	fan b5	R	N/A	N/A	On/Off	BV:40	fan_b5_1
Cir B Fan Output DO # 6	fan b6	R	N/A	N/A	On/Off	BV:41	 fan_b6_1
Cir B Fan Staging Number	FAN_ST_B	R	N/A	N/A	0-6	AV:23	 fan_st_b_1
Cir B Head Press Actuator Pos	hd_pos_b	R	%	N/A	0-100	AV:24	hd_pos_b_1
Cir B Hot Gas Bypass Output	HGBP V B	R	N/A	N/A	On/Off	BV:42	hgbp_v_b_1
Cir B Motor Thermistor Comp 1	cpb1 tmp	R	ohms	N/A	nnnn	AV:25	cpb1_tmp_1
Cir B Motor Thermistor Comp 2	cpb2_tmp	R	ohms	N/A	nnnn	AV:26	cpb2_tmp_1
Cir B Motor Thermistor Comp 3	cpb3 tmp	R	ohms	N/A	nnnn	AV:27	cpb3_tmp_1
Cir B Motor Thermistor Comp 4	cpb4_tmp	R	ohms	N/A	nnnn	AV:28	cpb4 tmp 1
Cir B Percent Total Capacity	CAPB_T	R	%	N/A	0-100	AV:29	capb_t_1
Cir B Saturated Condensing Tmp	SCT_B	R	°F	N/A	±nnn.n	AV:30	sct_b_1
Cir B Saturated Suction Temp	SST_B	R	°F	N/A	±nnn.n	AV:31	sst_b_1
Cir B Suction Gas Temperature	UCT_T_B	R	°F	N/A	±nnn.n	AV:32	suct_t_b_1
Cir B Suction Pressure	SP B	R	psi	N/A	nnn.n	AV:33	sp_b_1
Cir B Suction Superheat Temp	SH B	R	psi	N/A	nnn.n	AV:34	sh_b_1
Cir C Compressor 1 Heater Out	cp_c1_ht	R	N/A	N/A	On/Off	BV:43	cp_c1_ht_1
Cir C Compressor 1 Dutput	CP C1	R	N/A	N/A	On/Off	BV:44	cp_c1_11
Cir C Compressor 2 Heater Out	cp_c2_ht	R	N/A	N/A	On/Off	BV:45	cp_c2_ht_1
Cir C Compressor 2 Output	CP C2	R	N/A	N/A	On/Off	BV:46	cp_c2_n_
Cir C Compressor 3 Heater Out	cp_c3_ht	R	N/A	N/A	On/Off	BV:47	cp_c3_ht_1
Cir C Compressor 3 Output	CP C3	R	N/A	N/A	On/Off	BV:48	cp_c3_1
Cir C Compressor 4 Heater Out	cp_c4_ht	R	N/A	N/A	On/Off	BV:49	cp_c4_ht_1
Cir C Compressor 4 Output	CP_C4	R	N/A	N/A	On/Off	BV:50	ср_с4_п_т
Cir C Crank Heater Current Cp1	cpc1_cur	R	amps	N/A	nnn.n	AV:35	cpc1_cur_1
Cir C Crank Heater Current Cp2	cpc1_cur	R	amps	N/A	nnn.n	AV:36	cpc2 cur 1
Cir C Crank Heater Current Cp2	cpc2_cur	R	amps	N/A	nnn.n	AV:37	cpc2_cur_1
Cir C Crank Heater Current Cp4	cpc4_cur	R	amps	N/A	nnn.n	AV:38	cpc3_cur_1
Cir C Discharge Pressure	DP_C	R	· ·	N/A		AV:1609	dp_c_1
Cir C EXV Position	EXV_C	R	psi %	N/A N/A	nnn.n 0-100	AV:39	exv_c_1
Cir C Fan Output DO # 1	fan_c1	R	N/A	N/A	On/Off	BV:51	fan_c1_1
Cir C Fan Output DO # 1	fan_c2	R	N/A N/A	N/A N/A	On/Off	BV:51	fan_c1_1
· ·							
Cir C Fan Output DO # 4	fan_c3	R	N/A	N/A	On/Off	BV:53	fan_c3_1
Cir C Fan Output DO # 5	fan_c4	R	N/A	N/A	On/Off	BV:54	fan_c4_1
Cir C Fan Output DO # 5	fan_c5	R	N/A N/A	N/A N/A	On/Off	BV:55	fan_c5_1
Cir C Fan Output DO # 6	fan_c6 FAN ST C	R			On/Off	BV:56	fan_c6_1
Cir C Hoad Bross Actuator Pos		R	N/A	N/A	0-6	AV:40	fan_st_c_1
Cir C Head Press Actuator Pos	hd_pos_c	R	% N/A	N/A	0-100	AV:41	hd_pos_c_1
Cir C Hot Gas Bypass Output	HGBP_V_C	R	N/A	N/A	On/Off	BV:57	hgbp_v_c_1
Cir C Motor Thermistor Comp 1	cpc1_tmp	R	ohms	N/A	nnnn	AV:42	cpc1_tmp_1
Cir C Motor Thermistor Comp 2	cpc2_tmp	R	ohms	N/A	nnnn	AV:43	cpc2_tmp_1
Cir C Motor Thermistor Comp 3	cpc3_tmp	R	ohms	N/A	nnnn	AV:44	cpc3_tmp_1
Cir C Motor Thermistor Comp 4	cpc4_tmp	R	ohms	N/A	nnnn	AV:45	cpc4_tmp_1

LEGEND

CCN — Carrier Comfort Network
CHWS — Chilled Water Setpoint
DGT — Discharge Gas Temperature
DO — Discrete Output
EWT — Entering Water Temperature

Table G — Network Points List (cont)

POINT DESCRIPTION	CCN POINT NAME	READ/ WRITE	UNITS	DEFAULT VALUE	RANGE	BACNET OBJECT ID	BACNET OBJECT NAME
Cir C Percent Total Capacity	CAPC_T	R	%	N/A	0-100	AV:46	capc_t_1
Cir C Saturated Condensing Tmp	SCT_C	R	°F	N/A	±nnn.n	AV:47	sct_c_1
Cir C Saturated Suction Temp	SST_C	R	°F	N/A	±nnn.n	AV:48	sst_c_1
Cir C Suction Gas Temperature	SUCT_T_C	R	°F	N/A	±nnn.n	AV:49	suct_t_c_1
Cir C Suction Pressure	SP_C	R	psi	N/A	±nnn.n	AV:50	sp_c_1
Cir C Suction Superheat Temp	SH_C	R	^F	N/A	±nnn.n	AV:51	sh_c_1
Circuit A Fan #1 Hours	hr_fana1	R	hours	N/A	nnnnn	AV:52	hr_fana1_1
Circuit A Fan #2 Hours	hr_fana2	R	hours	N/A	nnnnn	AV:53	hr_fana2_1
Circuit A Fan #3 Hours	hr fana3	R	hours	N/A	nnnnn	AV:54	hr fana3 1
Circuit A Fan #4 Hours	hr fana4	R	hours	N/A	nnnnn	AV:55	hr_fana4_1
Circuit A Fan #5 Hours	hr fana5	R	hours	N/A	nnnnn	AV:56	hr fana5 1
Circuit A Fan #6 Hours	hr fana6	R	hours	N/A	nnnnn	AV:57	hr fana6 1
Circuit B Fan #1 Hours	hr fanb1	R	hours	N/A	nnnnn	AV:58	hr_fanb1_1
Circuit B Fan #2 Hours	hr fanb2	R	hours	N/A	nnnnn	AV:59	hr_fanb2_1
Circuit B Fan #3 Hours	hr fanb3	R	hours	N/A	nnnnn	AV:60	hr_fanb3_1
Circuit B Fan #4 Hours	hr fanb4	R	hours	N/A	nnnnn	AV:61	hr fanb4 1
Circuit B Fan #5 Hours	hr fanb5	R	hours	N/A	nnnnn	AV:62	hr fanb5 1
Circuit B Fan #6 Hours	hr fanb6	R	hours	N/A	nnnnn	AV:63	hr fanb6 1
Circuit C Fan #1 Hours	hr fanc1	R	hours	N/A N/A		AV:64	
Circuit C Fan #1 Hours	hr fanc2	R		N/A N/A	nnnnn	AV:64 AV:65	hr_fanc1_1 hr_fanc2_1
Circuit C Fan #2 Hours	hr fanc3	R	hours hours	N/A N/A	nnnnn	AV:65 AV:66	hr_fanc2_1
Circuit C Fan #3 Hours					nnnnn		
	hr_fanc4	R	hours	N/A	nnnnn	AV:67	hr_fanc4_1
Circuit C Fan #5 Hours	hr_fanc5	R	hours	N/A	nnnnn	AV:68	hr_fanc5_1
Circuit C Fan #6 Hours Circuit Loading Sequence	hr_fanc6	R/W	hours N/A	N/A 0	nnnnn 0=Auto 1=A Lead 2=B Lead 3=C Lead	AV:69 AV:70	hr_fanc6_1
Compressor A1 Hours	HR CP A1	R	hours	N/A	nnnnn	AV:71	hr_cp_a1_1
Compressor A1 Starts	st_cp_a1	R	N/A	N/A	nnnnn	AV:72	st_cp_a1_1
Compressor A2 Hours	HR_CP_A2	R	hours	N/A	nnnnn	AV:73	hr_cp_a2_1
Compressor A2 Starts	st_cp_a2	R	N/A	N/A	nnnnn	AV:74	st_cp_a2_1
Compressor A3 Hours	HR CP A3	R	hours	N/A	nnnnn	AV:75	hr_cp_a3_1
Compressor A3 Starts	st_cp_a3	R	N/A	N/A	nnnnn	AV:76	st_cp_a3_1
Compressor A4 Hours	HR CP A4	R	hours	N/A	nnnnn	AV:77	hr_cp_a4_1
Compressor A4 Starts	st_cp_a4	R	N/A	N/A	nnnnn	AV:78	st_cp_a4_1
Compressor B1 Hours	HR_CP_B1	R	hours	N/A	nnnnn	AV:79	hr_cp_b1_1
Compressor B1 Starts	st cp b1	R	N/A	N/A	nnnnn	AV:80	st_cp_b1_1
Compressor B2 Hours	HR_CP_B2	R	hours	N/A	nnnnn	AV:81	hr_cp_b2_1
Compressor B2 Starts	st_cp_b2	R	N/A	N/A	nnnnn	AV:82	st_cp_b2_1
Compressor B3 Hours	HR_CP_B3	R	hours	N/A	nnnnn	AV:83	hr_cp_b3_1
Compressor B3 Starts	st_cp_b3	R	N/A	N/A	nnnnn	AV:84	st_cp_b3_1
Compressor B4 Hours	HR_CP_B4	R	hours	N/A	nnnnn	AV:85	hr_cp_b4_1
Compressor B4 Hours Compressor B4 Starts	st_cp_b4	R	N/A	N/A N/A		AV:85 AV:86	st_cp_b4_1
					nnnnn		
Compressor C1 Starts	HR_CP_C1	R	hours N/A	N/A N/A	nnnnn	AV:87	hr_cp_c1_1
Compressor C2 Hours	st_cp_c1	R			nnnnn	AV:88	st_cp_c1_1
Compressor C2 Hours	HR_CP_C2	R	hours	N/A	nnnnn	AV:89	hr_cp_c2_1
Compressor C2 Starts	st_cp_c2	R	N/A	N/A	nnnnn	AV:90	st_cp_c2_1
Compressor C3 Hours	HR_CP_C3	R	hours	N/A	nnnnn	AV:91	hr_cp_c3_1
Compressor C3 Starts	st_cp_c3	R	N/A	N/A	nnnnn	AV:92	st_cp_c3_1
Compressor C4 Hours	HR_CP_C4	R	hours	N/A	nnnnn	AV:93	hr_cp_c4_1
Compressor C4 Starts	st_cp_c4	R	N/A	N/A	nnnnn	AV:94	st_cp_c4_1
Control Point	CTRL_PNT	R/W	°F	N/A	±nnn.n	AV:96	ctrl_pnt_1
Controlled Water Temp	CTRL_WT	R	°F	N/A	±nnn.n	AV:95	ctrl_wt_1
Cooler Fluid Type	flui_typ	R	N/A	1	1=Water, 2=Brine 3=Low Brine	AV:97	flui_typ_1

LEGEND

CCN CHWS DGT DO EWT Carrier Comfort Network
Chilled Water Setpoint
Discharge Gas Temperature
Discrete Output
Entering Water Temperature

EXV OAT R W Electronic Expansion Valve
Outdoor Air Temperature
Read
Write

Table G — Network Points List (cont)

POINT DESCRIPTION	CCN POINT NAME	READ/ WRITE	UNITS	DEFAULT VALUE	RANGE	BACNET OBJECT ID	BACNET OBJECT NAME
Cooler Heater Active	Mode_06	R	N/A	N/A	Yes/No	BV:58	mode_06_1
Cooler Heater Command	COOLHEAT	R	N/A	N/A	On/Off	BV:59	coolheat_1
Cooler Pumps Rotation	Mode_07	R	N/A	N/A	Yes/No	BV:60	mode_07_1
Cooler Pumps Sequence	pump_seq	R/W	N/A	0	0=No pump, 1=1 pump only, 2=2 pumps auto, 3=Pump 1 manual, 4=Pump 2 manual	AV:98	pump_seq_1
Cooling Ice Setpoint	ice_sp	R/W	^F	1	-20-+32	AV:99	ice_sp_1
Cooling Ramp Loading	cramp_sp	R/W	^F	0	0.2-2.0	AV:100	cramp_sp_1
Cooling Reset Deg. Value	cr_deg	R/W	°F	44	-30 -+30	AV:101	cr_deg_1
Cooling Setpoint 1	csp1	R/W	°F	44	-20.0-+78.8	AV:102	csp1_1
Cooling Setpoint 2	csp2	R/W	min	N/A	-20.0-+78.8	AV:103	csp2_1
Critical Alarm Status	CRITICAL	R	N/A	N/A	On/Off	BV:61	critical_1
Current Full Reset Value	v_cr_fu	R/W	ma	0	0-20	AV:104	v_cr_fu_1
Current No Reset Value	v_cr_no	R/W	ma	0	0-20	AV:105	v_cr_no_1
Current Setpoint	SP	R	°F	N/A	±nnn.n	AV:3500	chws_sp_1
Defrost Active On Cir A	Mode_19	R	N/A	N/A	Yes/No	BV:62	mode_19_1
Defrost Active On Cir B	Mode_20	R	N/A	N/A	Yes/No	BV:63	mode_20_1
Delta T Full Reset Value	dt_cr_fu	R/W	^F	0	0-25	AV:106	dt_cr_fu_1
Delta T No Reset Value	dt_cr_no	R/W	^F	0	0-25	AV:107	dt_cr_no_1
Demand Limit Active	Mode_04	R	N/A	N/A	Yes/No	BV:64	mode_04_1
Demand Limit Type Select	lim_sel	R/W	N/A	0	0=None, 1=Switch control, 2=4-20mA Control	AV:108	lim_sel_1
Electric Heat Active	Mode_15	R	N/A	N/A	0-4/Off	BV:67	mode_15_1
Electrical Box Safety	ELEC_BOX	R	N/A	N/A	Yes/No	BV:65	elec_box_1
Electrical Heat Stage	EHS_STEP	R	N/A	N/A	Open/Close	BV:66	ehs_step_1
Element Comm Status		R	N/A	N/A		BV:2999	element_stat_1
Emergency Stop	EMSTOP	R/W	N/A	N/A	Enable/Disable	BV:68	emstop_1
Equipment Alarm		R	N/A	N/A		BV:146	element_alarm_1
External Temperature	OAT	R	°F	N/A	±nnn.n	AV:109	oat_1
Flow Checked if Pump Off	pump_loc	R/W	N/A	Yes	Yes/No	BV:69	pump_loc_1
Free Cooling Active	Mode_13	R	N/A	N/A	Yes/No	BV:70	mode_13_1
Free Cooling Disable Sw.	FC_SW	R	N/A	N/A	Yes/No	BV:72	fc_sw_1
Free Cooling Disable?	FC_DSBLE	R	N/A	N/A	Yes/No	BV:71	fc_dsble_1
Heat Reclaim Pump Hours	hr_hpump	R	hours	N/A	nnnnn	AV:112	hr_hpump_1
Heat Reclaim Select	RECL_SEL	R/W	N/A	N/A	Yes/No	BV:74	recl sel 1

LEGEND

CCN — Carrier Comfort Network
CHWS — Chilled Water Setpoint
DGT — Discharge Gas Temperature
DO — Discrete Output
EWT — Entering Water Temperature

Table G— Network Points List (cont)

POINT DESCRIPTION	CCN POINT NAME	READ/ WRITE	UNITS	DEFAULT VALUE	RANGE	BACNET OBJECT ID	BACNET OBJECT NAME
Heat/Cool Select	HC_SEL	R/W	N/A	N/A	0=Cool, 1=Heat, 2=Auto	AV:110	hc_sel_1
Heat/Cool Status	HEATCOOL	R	N/A	N/A	0=Cool, 1=Heat 2=Stand-by, 3=Both	AV:111	heatcool_1
Heating Low EWT Lockout	Mode_16	R	N/A	N/A	Yes/No	BV:73	mode_16_1
High DGT Circuit A	Mode_24	R	N/A	N/A	Yes/No	BV:75	mode_24_1
High DGT Circuit B	Mode_25	R	N/A	N/A	Yes/No	BV:76	mode_25_1
High DGT Circuit C	Mode_26	R	N/A	N/A	Yes/No	BV:77	mode_26_1
High Pres Override Cir A	Mode_27	R	N/A	N/A	Yes/No	BV:78	mode_27_1
High Pres Override Cir B	Mode_28	R	N/A	N/A	Yes/No	BV:79	mode_28_1
High Pres Override Cir C	Mode_29	R	N/A	N/A	Yes/No	BV:80	mode_29_1
Ice Done Storage Switch	ICE_SW	R	N/A	N/A	Open/Close	BV:81	ice_sw_1
Ice Mode in Effect	Mode_18	R	N/A	N/A	Yes/No	BV:82	mode_18_1
Interlock Status	LOCK_1	R	N/A	N/A	Open/Close	BV:83	lock_1_1
Lag Capacity Limit Value	LAG_LIM	R	%	N/A	nnn	AV:113	lag_lim_1
Limit 4-20mA Signal	LIM_ANAL	R	ma	N/A	±nn.n	AV:114	lim_anal_1
Limit Switch 1 Status	LIM_SW1	R	N/A	N/A	Open/Close	BV:84	lim_sw1_1
Limit Switch 2 Status	LIM_SW2	R	N/A	N/A	Open/Close	BV:85	lim_sw2_1
Local Schedule		R	N/A	N/A		BV:2	schedule_1
Low Suction Circuit A	Mode_21	R	N/A	N/A	Yes/No	BV:86	mode_21_1
Low Suction Circuit B	Mode_22	R	N/A	N/A	Yes/No	BV:87	mode_22_1
Low Suction Circuit C	Mode_23	R	N/A	N/A	Yes/No	BV:88	mode_23_1
mA For 0% Demand Limit	lim_ze	R/W	mA	0	0-20	AV:117	lim_ze_1
mA For 100% Demand Limit	lim_mx	R/W	mA	0	0-20	AV:118	lim_mx_1
Machine Operating Hours	HR_MACH	R	hours	N/A_	nnnnn	AV:115	hr_mach_1
Machine Starts Number	st_mach	R	N/A	N/A	nnnnn	AV:116	st_mach_1
Master/Slave Select	ms_sel	R/W	N/A	0	0= Disable, 1=Master, 2=Slave	AV:119	ms_sel_1
Minutes Left for Start	min_left	R	min	N/A	0-15	AV:120	min_left_1
Night Low Noise Active	Mode_09	R	N/A	N/A	Yes/No	BV:89	mode_09_1
OAT Full Reset Value	oatcr_fu	R/W	°F	14	14-125	AV:121	oatcr_fu_1
OAT No Reset Value	oatcr_no	R/W	°F	0	0-25	AV:122	oatcr_no_1
Occupied Override Switch	OCC_OVSW	R	N/A	N/A	Open/Close	BV:90	occ_ovsw_1
On/Off - Remote Switch	ONOFF_SW	R	N/A	N/A	Open/Close	BV:91	onoff_sw_1
Optional Space Temp	SPACETMP	R	°F	N/A	±nnn.n	AV:123	spacetmp_1
Pass For All User Config	all_pass	R/W	N/A	No	No/Yes	BV:92	all_pass_1
Percent Total Capacity	CAP_T	R	%	N/A	nnn	AV:1700	cap_t_1
Pump Auto Rotation Delay	pump_del	R/W	hours	48	24-3000	AV:124	pump_del_1
Pump Periodic Start	Mode_08	R	N/A	N/A	Yes/No	BV:93	mode_08_1
Pump Run Status	PUMP_DEF	R	N/A	N/A	Open/Close	BV:94	pump_def_1
Pump Sticking Protection	pump_per	R/W	N/A	No	No/Yes	BV:95	pump_per_1
Pumpdown Pressure Cir A	PD_P_A	R	psi	N/A	±nnn.n	AV:125	pd_p_a_1
Pumpdown Pressure Cir B	PD_P_B	R	psi	N/A	±nnn.n	AV:126	pd_p_b_1
Pumpdown Saturated Tmp A	hr_sat_a	R	°F	N/A	n	AV:127	hr_sat_a_1
Pumpdown Saturated Tmp B	hr_sat_b	R	°F	N/A	n	AV:128	hr_sat_b_1

LEGEND

Carrier Comfort Network
Chilled Water Setpoint
Discharge Gas Temperature
Discrete Output
Entering Water Temperature CCN CHWS DGT DO EWT

Table G — Network Points List (cont)

POINT DESCRIPTION	CCN POINT NAME	READ/ WRITE	UNITS	DEFAULT VALUE	RANGE	BACNET OBJECT ID	BACNET OBJECT NAME
Ramp Loading Active	Mode_05	R	N/A	N/A	Yes/No	BV:96	mode_05_1
Ramp Loading Select	ramp_sel	R/W	N/A	No	No/Yes	BV:97	ramp_sel_1
Ready or Running Status	READY	R	N/A	N/A	On/Off	BV:98	ready_1
Reclaim Active	Mode_14	R	N/A	N/A	Yes/No	BV:99	mode_14_1
Reclaim Condenser Flow	condflow	R	N/A	N/A	On/Off	BV:100	condflow_1
Reclaim Condenser Heater	cond_htr	R	N/A	N/A	On/Off	BV:101	cond_htr_1
Reclaim Condenser Pump	CONDPUMP	R	N/A	N/A	On/Off	BV:102	condpump_1
Reclaim Condenser Pump	COND_PMP	R	N/A	N/A	On/Off	BV:103	cond_pmp_1
Reclaim Deadband	hr_deadb	R/W	^F	9.0	5-27	AV:129	hr_deadb_1
Reclaim Entering Fluid	HR_EWT	R	°F	N/A	±nnn.n	AV:130	hr_ewt_1
Reclaim Leaving Fluid	HR_LWT	R	°F	N/A	±nnn.n	AV:131	hr_lwt_1
Reclaim Setpoint	rsp	R/W	°F	122	95-122	AV:132	rsp_1
Reclaim Status Circuit A	hrstat_a	R	N/A	N/A	n	AV:133	hrstat_a_1
Reclaim Status Circuit B	hrstat_b	R	N/A	N/A	n	AV:134	hrstat_b_1
Reclaim Valve Position	hr_v_pos	R	%	N/A	±nnn.n	AV:135	hr_v_pos_1
Remote Heat/Cool Switch	HC_SW	R	N/A	N/A	Open/Close	BV:104	hc_sw_1
Remote Interlock Status	REM_LOCK	R	N/A	N/A	Open/Close	BV:105	rem_lock_1
Remote Reclaim Switch	RECL_SW	R	N/A	N/A	Open/Close	BV:106	recl_sw_1
Remote Setpoint Switch	SETP_SW	R	N/A	N/A	Open/Close	BV:107	setp_sw_1
Reset in Effect	Mode_03	R	N/A	N/A	Yes/No	BV:108	mode_03_1
Reset/Setpoint 4-20mA In	SP_RESET	R	ma	N/A	±nn.n	AV:136	sp_reset_1
Rotate Pumps Now?	ROT PUMP	R/W	N/A	N/A	Yes/No	BV:109	rot pump 1
Run Status	STATUS	R	N/A	N/A	0=Off, 1=Running 2=Stopping, 3= Delay 4=Tripout, 5=Ready 6=Override, 7=Defrost 8=Run Test, 9=Test	AV:137	status_1
Running Status	RUNNING	R	N/A	N/A	On/Off	BV:110	running_1
Second Setpoint in Use	Mode_02	R	N/A	N/A	Yes/No	BV:111	mode_02_1
Setpoint Occupied?	SP_OCC	R	N/A	N/A	Yes/No	BV:112	sp_occ_1
Shutdown Indicator State	SHUTDOWN	R	N/A	N/A	On/Off	BV:113	shutdown_1
Space T Full Reset Value	spacr_fu	R	°F	14	14-125	AV:138	spacr_fu_1
Space T No Reset Value	spacr_no	R	°F	14	14-125	AV:139	spacr_no_1
Staged Loading Sequence	seq_typ	R/W	N/A	No	No/Yes	BV:114	seq_typ_1
Starts Max During 1 Hour	st_cp_mx	R	N/A	N/A	nnnnn	AV:141	st_cp_mx_1
Starts/hr From Last 24 h	st_cp_av	R	N/A	N/A	nnnnn	AV:140	st_cp_av_1
Startup Delay in Effect	Mode_01	R	N/A	N/A	Yes/No	BV:115	mode_01_1
Sub Condenser Temp Cir A	hr_subta	R	°F	N/A	±nnn.n	AV:142	hr_subta_1
Sub Condenser Temp Cir B	hr_subtb	R	°F	N/A	±nnn.n	AV:143	hr_subtb_1
Subcooling Temperature A	hr_subca	R	°F	N/A	±nnn.n	AV:144	hr_subca_1
Subcooling Temperature B	hr_subcb	R	°F	N/A	±nnn.n	AV:145	hr_subcb_1
Superheat Override Cir A	Mode_30	R	N/A	N/A	Yes/No	BV:116	mode_30_1
Superheat Override Cir B	Mode_31	R	N/A	N/A	Yes/No	BV:117	mode_31_1
Superheat Override Cir C	Mode_32	R	N/A	N/A	Yes/No	BV:118	mode_32_1

LEGEND

CCN CHWS DGT DO EWT Carrier Comfort Network
Chilled Water Setpoint
Discharge Gas Temperature
Discrete Output
Entering Water Temperature

Table G — Network Points List (cont)

POINT DESCRIPTION	CCN POINT NAME	READ/ WRITE	UNITS	DEFAULT VALUE	RANGE	BACNET OBJECT ID	BACNET OBJECT NAME
Switch Limit Setpoint 1	lim_sp1	R/W	%	100	0-100	AV:146	lim_sp1_1
Switch Limit Setpoint 2	lim_sp2	R/W	%	100	0-100	AV:147	lim_sp2_1
Switch Limit Setpoint 3	lim_sp3	R/W	%	100	0-100	AV:148	lim_sp3_1
System Cooling Demand Level		R	N/A	N/A		AV:9006	cool_demand_level_1
System Demand Limiting		R	N/A	N/A		BV:3	dem_lmt_act_1
System Manager Active	Mode_10	R	N/A	N/A	Yes/No	BV:119	mode_10_1
System OAT Master		R	N/A	N/A		AV:80001	mstr_oa_temp_1
Unit Off to On Delay	off_on_d	R/W	min	1	1-15	AV:149	off_on_d_1
User Defined Analog 1		R	N/A	N/A		AV:2901	user_analog_1_1
User Defined Analog 2		R	N/A	N/A		AV:2902	user_analog_2_1
User Defined Analog 3		R	N/A	N/A		AV:2903	user_analog_3_1
User Defined Analog 4		R	N/A	N/A		AV:2904	user_analog_4_1
User Defined Analog 5		R	N/A	N/A		AV:2905	user_analog_5_1
User Defined Binary 1		R	N/A	N/A		BV:2911	user_binary_1_1
User Defined Binary 2		R	N/A	N/A		BV:2912	user_binary_2_1
User Defined Binary 3		R	N/A	N/A		BV:2913	user_binary_3_1
User Defined Binary 4		R	N/A	N/A		BV:2914	user_binary_4_1
User Defined Binary 5		R	N/A	N/A		BV:2915	user_binary_5_1
Water Cond Enter Valve A	hr_ew_a	R	N/A	N/A	On/Off	BV:120	hr_ew_a_1
Water Cond Enter Valve B	hr_ew_b	R	N/A	N/A	On/Off	BV:121	hr_ew_b_1
Water Cond Leaving Val A	hr_lw_a	R	N/A	N/A	On/Off	BV:122	hr_lw_a_1
Water Cond Leaving Val B	hr_lw_b	R	N/A	N/A	On/Off	BV:123	hr_lw_b_1
Water Exchanger Entering Temp	EWT	R	°F	N/A	±nnn.n	AV:150	ewt_1
Water Exchanger Leaving Temp	LWT	R	°F	N/A	±nnn.n	AV:151	lwt_1
Water Pump #1 Command	CPUMP_1	R	N/A	N/A	On/Off	BV:124	cpump_1_1
Water Pump #1 Hours	hr_cpum1	R	hours	N/A	nnnnn	AV:152	hr_cpum1_1
Water Pump #2 Command	CPUMP_2	R	N/A	N/A	On/Off	BV:125	cpump_2_1
Water Pump #2 Hours	hr_cpum2	R	hours	N/A	nnnnn	AV:153	hr_cpum2_1

LEGEND

CCN CHWS DGT DO EWT Carrier Comfort Network
Chilled Water Setpoint
Discharge Gas Temperature
Discrete Output
Entering Water Temperature EXV OAT R W Electronic Expansion Valve
Outdoor Air Temperature
Read
Write

APPENDIX G — SIEMENS OR SCHNEIDER LOW AMBIENT DRIVES

LOW AMBIENT TEMPERATURE HEAD PRESSURE CONTROL OPERATING INSTRUCTIONS — The

30RB low ambient control is a variable frequency drive (VFD) that varies the speed of the lead condenser fan in each circuit to maintain the calculated head pressure control set point. The fan speed varies in proportion to the 0 to 10 vdc analog signal produced by the AUX1 fan board. The display indicates motor speed in Hz by default. These units may use a Siemens Micromaster 420/440 VFD or a Schneider Altivar 21 and 212. The Schneider Altivar VFD performs the same functions as Siemens drive. However, there are different control wiring connections and parameter programming.

<u>Siemens VFD Operation</u> — The low ambient temperature head pressure controller is pre-configured to operate from a 0 to 10 vdc analog input signal present on terminals 3 (AIN+) and 4 (AIN-). Jumpers between terminals 2 and 4 and terminals 5 and 8 are required for proper operation. The drive is enabled based on an increase in the analog input signal above 0 vdc. Output is varied from 0 Hz to 60 Hz as the analog signal increases from 0 vdc to 10 vdc. When the signal is at 0 vdc the drive holds the fan at 0 rpm. The head pressure control set point is not adjustable. The MBB determines the control set point as required.

<u>Siemens VFD Replacement</u> — If the controller is replaced the parameters in Table H must be configured. See Fig. G and H.

Table H — Siemens VFD Head Pressure Control Parameters

PARAMETER*	VALUE	DESCRIPTION
P0010	1	Enter Quick Commissioning
P0311	1140	Rated Motor Speed
P3900	1	End of Quick Commissioning
P0003	3	User Access Level
P0757	0.50	Control Signal Scaling Offset
P0761	0.50	Control Signal Scaling Offset
P1210	6	Automatic Restart Setting
P1310	10	Continuous Boost Parameter

^{*}Remove jumper from terminals 5 and 8 (or terminals 5 and 9 for 575-v units) before configuring parameter. Reinstall jumper after configuration is complete.

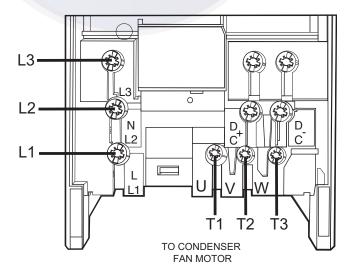
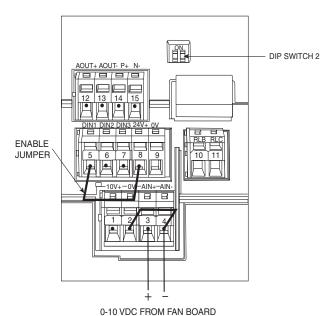



Fig. G — Low Ambient Temperature Control Power Wiring

NOTE: For 575-v units, jumper terminals are 5 and 9.

Fig. H — Low Ambient Temperature Control Signal Wiring

DIP switch settings:

DIP switch 1 is not used.

DIP switch 2 is the motor frequency. (OFF = 50 Hz, ON = 60 Hz)

<u>Siemens VFD Programming</u> — Parameter values can be altered via the operator panel. The operator panel features a five-digit, seven-segment display for displaying parameter numbers and values, alarm and fault messages, set points, and actual values. See Fig. I. See Table I for additional information on the operator panel.

NOTE: The operator panel motor control functions are disabled by default. To control the motor via the operator panel, parameter P0700 should be set to 1 and P1000 set to 1. The operator panel can be fitted to and removed from the drive while power is applied. If the operator panel has been set as the I/O control (P0700 = 1), the drive will stop if the operator panel is removed.

Fig. I — Siemens VFD Low Ambient Temperature Controller

<u>Changing Single Digits in Parameter Values with the Siemens VFD Operator Panel</u> — For changing the parameters value rapidly, the single digits of the display can be changed by performing the following actions:

- 1. Press (parameter button) to enter the parameter value changing level.
- 2. Press [n] (function button), which causes the farthest right digit to blink.

- 3. Change the value of this digit by pressing or
- 4. Pressing (function button) again to cause the next digit to blink.
- 5. Perform steps 2 to 4 until the required value is displayed.
- 6. Press (parameter button) to exit the parameter value changing level.

NOTE: The function button may also be used to acknowledge a fault condition.

Quick Commissioning with the Siemens VFD Operator <u>Panel (P0010=1)</u> — It is **important** that parameter P0010 is used for commissioning and P0003 is used to select the number of parameters to be accessed. The P0010 parameter allows a group of parameters to be selected that will enable quick commissioning. Parameters such as motor settings and ramp settings are included. At the end of the quick commissioning sequences, P3900 should be selected, which, when set to 1, will carry out the necessary motor calculations and clear all other parameters (not included in P0010=1 to the default settings. This will only occur in Quick Commissioning mode. See Fig. J.

Reset the Siemens VFD to Factory Default — To reset all parameters to the factory default settings, the following parameters should be set as follows:

- 1. Set P0010=30.
- 2. Set P0970 = 1.

NOTE: The reset process can take up to 3 minutes to complete.

Troubleshooting the Siemens VFD with the Operating Panel — Warnings and faults are displayed on the operating panel with Axxx and Fxxx. The individual messages are shown in Table J.

If the motor fails to start, check the following:

- Power is present on T1, T2 and T3.
- Configuration jumpers are in place.
- Control signal between 1 vdc and 10 vdc is present on terminals 3 and 4.
- P0010 = 0.
- P0700 = 2.

<u>Siemens VFD Fault Messages (Tables J and K)</u> — In the event of a failure, the drive switches off and a fault code appears on the display.

NOTE: To reset the fault code, one of the following methods can be used:

- 1. Cycle the power to the drive.
- 2. Press the **Fn** button on the operator panel.

Table I — Siemens VFD Low Ambient Temperature Controller Operator Panel

PANEL/BUTTON	FUNCTION	DESCRIPTION
r0000	Indicates Status	The LCD displays the settings currently used by the converter.
0	Start Converter	The Start Converter button is disabled by default. To enable this button set P0700 = 1.
	Stop Converter	Press the Stop Converter button to cause the motor to come to a standstill at the selected ramp down rate. Disabled by default, to enable set P0700 = 1.
0		Press the Stop Converter button twice (or hold) to cause the motor to coast to a standstill. This function is always enabled.
8	Change Direction	Press the Change Direction button to change the direction of rotation of the motor. Reverse is indicated by a minus (–) sign or a flashing decimal point. Disabled by default, to enable set P0700 = 1.
jog	Jog Motor	Press the Jog Motor button while the inverter has no output to cause the motor to start and run at the preset jog frequency. The motor stops when the button is released. The Jog Motor button is not enabled when the motor is running.
	Functions	Use the Functions button to view additional information. Press and hold the button to display the following information starting from any parameter during operation:
Fn		 DC link voltage (indicated by d – units V). Output current. (A) Output frequency (Hz) Output voltage (indicated by o – units V). The value selected in P0005 (If P0005 is set to show any of the above [3, 4, or 5] then this will not be shown when toggling through the menu).
		Press the Functions button repeatedly to toggle through displayed values. Jump Function
		Press of the Fn button from any parameter (rXXXX or PXXXX) to immediately jump to R0000, when another parameter can be changed, if required. Return to R0000 and press the Functions again to return.
P	Access Parameters	Allows access to the parameters.
6	Increase Value	Press the Increase Value button to increase the displayed value. To change the Frequency Setpoint using the operator panel set P1000 = 1.
•	Decrease Value	Press the Decrease Value button to decrease the displayed value. To change the Frequency Setpoint using the operating panel set P1000 = 1.

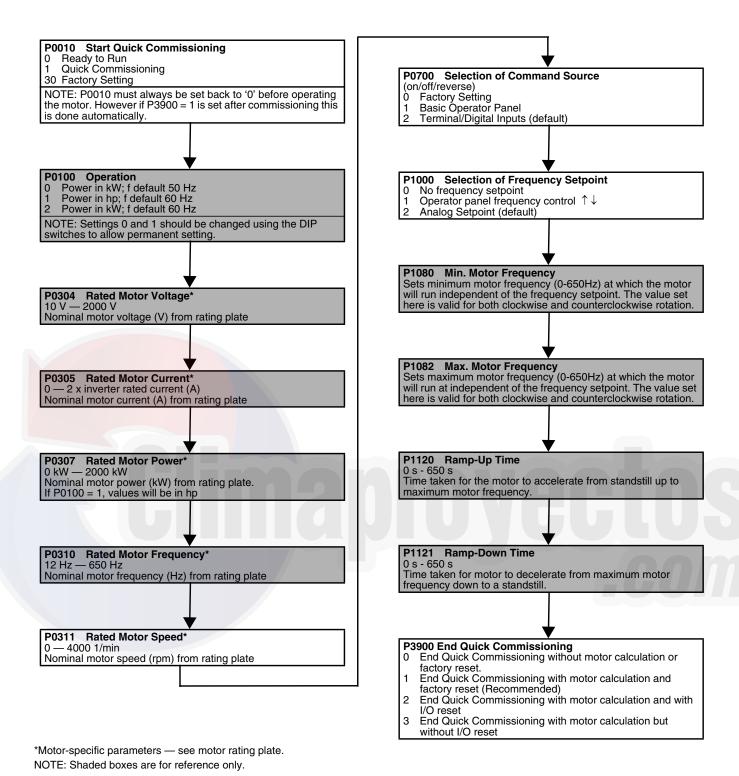


Fig. J — Siemens VFD Low Ambient Temperature Controller Flow Chart Quick Commissioning

Table J — Siemens VFD Low Ambient Temperature Controller Fault Messages

FAULT	POSSIBLE CAUSES	TROUBLESHOOTING
F0001 Overcurrent	Motor power does not correspond to the inverter power Motor lead short circuit Ground fault	Check the following: 1. Motor power (P0307) must correspond to inverter power (P0206) 2. Motor cable and motor must have no short-circuits or ground faults 3. Motor parameters must match the motor in use 4. Motor must not be obstructed or overloaded After Steps 1-4 have been checked, increase the ramp time (P1120) and reduce the boost level (P1310, P1311, P1312).
F0002 Overvoltage	 DC-link voltage (r0026) exceeds trip level (P2172) Overvoltage can be caused either by too high main supply voltage or if motor is in regenera- tive mode Regenerative mode can be caused by fast ramp downs or if the motor is driven from an active load 	Check the following: 1. Supply voltage (P0210) must lie within limits indicated on rating plate 2. DC-link voltage controller must be enabled (P1240) and have parameters set correctly 3. Ramp-down time (P1121) must match inertia of load
F0003 Undervoltage	Main supply failed Shock load outside specified limits	Check the following: 1. Supply voltage (P0210) must lie within limits indicated on rating plate 2. Supply must not be susceptible to temporary failures or voltage reductions
F0004 Drive Overtemperature	Ambient temperature outside of limits Fan failure	Check the following: 1. Fan must turn when inverter is running 2. Pulse frequency must be set to default value 3. Air inlet and outlet points are not obstructed 4. Ambient temperature could be higher than specified for the drive.
F0005 Drive l ² t	Drive overloaded Duty cycle too demanding Motor power (P0307) exceeds drive power capability (P0206)	Check the following: 1. Load duty cycle must lie within specified limits 2. Motor power (P0307) must match drive power (P0206)
F0011 Motor Overtemperature I ² t	Motor overloaded Motor data incorrect Long time period operating at low speeds	Check motor data Check loading on motor Boost settings too high (P1310, P1311, P1312) Check parameter for motor thermal time constant Check parameter for motor I²t warning level
F0041 Stator Resistance Measurement Failure	Stator resistance measurement failure	Check if the motor is connected to the drive Check that the motor data has been entered correctly
F0051 Parameter EEPROM Fault	Reading or writing of the non-volatile parameter storage has failed	Factory reset and new parameters set Replace drive
F0052 Powerstack Fault	Reading of the powerstack information has failed or the data is invalid	Replace drive
F0060 Asic Timeout	Internal communications failure	Acknowledge fault Replace drive if repeated
F0070 Communications Board Setpoint Error	No setpoint received from communications board during telegram off time	Check connections to the communications board Check the master
F0071 No Data for USS (RS232 Link) During Telegram Off Time	No response during telegram off time via USS (BOP link)	Check connections to the communications board Check the master
F0072 No Data from USS (RS485 Link) During Telegram Off Time	No response during telegram off time via USS (COM link)	Check connections to the communications board Check the master
F0080 Analog Input - Lost Input Signal	Broken wire Signal out of limits	Check connection to analog input
F0085 External Fault	External fault is triggered via terminal inputs	Disable terminal input for fault trigger
F0101 Stack Overflow	Software error or processor failure	Run self test routines Replace drive
F0221 PI Feedback Below Minimum Value	PID Feedback below minimum value P2268	Change value of P2268 Adjust feedback gain
F0222 PI Feedback Above Maximum Value	PID Feedback above maximum value P2267	Change value of P2267 Adjust feedback gain
F0450 (Service Mode Only) BIST Tests Failure	Fault value 1 Some of the power section tests have failed 2 Some of the control board tests have failed 4 Some of the functional tests have failed 8 Some of the IO module tests have failed 16 The Internal RAM has failed its check on power-up	Inverter may run but certain actions will not function correctly Replace drive

LEGEND

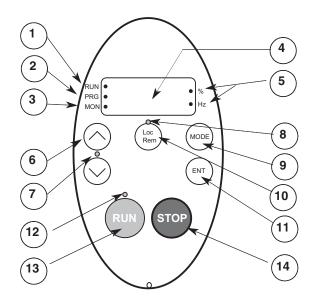
I2t — Current Squared Time

Table K — Siemens VFD Alarm Messages

FAULT	POSSIBLE CAUSES	TROUBLESHOOTING
A0501 Current Limit	Motor power does not correspond to the drive power Motor leads are too short Ground fault	Check whether the motor power corresponds to the drive power Check that the cable length limits have not been exceeded Check motor cable and motor for short-circuits and ground faults Check whether the motor parameters correspond with the motor being used Check the stator resistance Increase the ramp-up-time Reduce the boost Check whether the motor is obstructed or overloaded
A0502 Overvoltage Limit	Mains supply too high Load regenerative Ramp-down time too short	Check that mains supply voltage is within allowable range Increase ramp down times NOTE: If the vdc-max controller is active, ramp-down times will be automatically increased
A0503 Undervoltage Limit	Mains supply too low Short mains interruption	Check main supply voltage (P0210)
A0504 Drive Overtemperature	Warning level of inverter heat-sink temperature (P0614) is exceeded, resulting in pulse frequency reduction and/or output frequency reduction depending on parameters set (P0610)	Check if ambient temperature is within specified limits Check load conditions and duty cycle Check if fan is turning when drive is running
A0505 Drive I ² t	Warning level is exceeded; current will be reduced if parameters set (P0610 = 1)	Check if duty cycle is within specified limits
A0506 Drive Duty Cycle	Heatsink temperature and thermal junction model are outside of allowable range	Check if duty cycle is within specified limits
A0511 Motor Overtemperature I²t	Motor overloaded	Check the following: 1. P0611 (motor l²t time constant) should be set to appropriate value 2. P0614 (Motor l²t overload warning level) should be set to suitable level 3. Are long periods of operation at low speed occurring 4. Check that boost settings are not too high
A0541 Motor Data Identification Active	Motor data identification (P1910) selected or running	Wait until motor identification is finished
A0600 RTOS Overrun Warning	Software error	-

LEGEND

I2t — Current Squared Time


Schneider Altivar VFD Operation — The low ambient temperature head pressure controller is pre-configured to operate from a 0 to 10 vdc analog input signal present on terminals VIA and CC. A jumper between terminals P24 and F is required for proper operation. The drive is enabled based on an increase in the analog input signal above 0 vdc. Output is varied from 0 Hz to 60 Hz as the analog signal increases from 0 vdc to 10 vdc. When the signal is at 0 vdc the drive holds the fan at 0 rpm. The head pressure control set point is not adjustable. The MBB determines the control set point as required. The operating panel is shown in Fig. K. Refer to the Quick Start Guide for how to access the programming mode, or the documentation available at http://www.schneider-electric.com for a complete set of VFD parameters, fault codes and trouble-shooting information.

<u>Schneider Altivar VFD Replacement</u> — For Altivar 212 VFDs, if the controller is replaced the parameters in Table E must be configured. It is recommended that the configuration of the VFD is verified per Table L prior to proceeding. Also, the following must be wired (see Fig. G, H, and 36-43):

- 1. A jumper must be in place from terminal P24 to F.
- 2. Connect the red and black wires from fan board 0-10 VDC output to terminal VIA and CC respectively.
- 3. Connect the motor power wires T1, T2 and T3 respectively to terminal U/T1, V/T2 and W/T3 of the drive.
- 4. Connect the line power wires L1, L2 and L3 from control box respectively to terminal R/L1, S/L2 and T/L3 of the drive.

Table L — Schneider Altivar 212 VFD Operating Parameters

PARAMETER	NAME	VALUE
uLu	Rated Motor Voltage	Nominal motor voltage(V) from rating plate
F201	VIA Speed Reference Level 1	5
F202	VIA Output Frequency Level 1	0
F203	VIA Speed Reference Level 2	100
F204	VIA Output Frequency Level 2	60
F401	Slip compensation	60%
F415	Rated Motor Current	Nominal motor current(A) from rating plate
F417	Rated Motor Speed	Nominal motor speed(RPM) from rating plate
F701	Keypad display: % or A/V	1
tHr	Motor Rated Current Overload Setting	Nominal motor current(A) from rating plate
uL	Rated Motor Frequency	60 Hz
FH	Maximum Frequency	60 Hz
LL	Low Speed	0 Hz
UL	High Speed	60 Hz
ACC	Ramp-up Time	10 Sec
dEC	Ramp-down Time	10 Sec
cnod	Remote Mode Start/Stop Control	0 (Control terminal logic inputs)
fnod	Remote Mode Primary Speed reference Source	1 (VIA)

CALL OUT	LED/KEY	DESCRIPTION	
1	Display RUN LED	Illuminates when a run command is applied to the drive controller. Flashes when a speed reference is present with the run command.	
2	Display PRG LED	Illuminates when Programming mode is active. Flashes when -GrU menus are active.	
3	Display MON LED	Illuminates when Monitoring mode is active. Flashes in fault record display mode.	
4	Display Unit	4 digits, 7 segments	
5	Display Unit LED	The % LED illuminates when a displayed numeric value is a percentage. The Hz LED illuminates when a displayed numeric value is in hertz.	
		Depending on the mode, use the arrows to: navigate between the menus, change a value, or change the speed reference when Up/Down LED (7) is lit.	
7	Up/Down LED	Illuminates when the Up/Down arrows are controlling the speed reference.	
8	Loc/Rem LED	Illuminates when Local mode is selected.	

	ī	
OUT	LED/KEY	DESCRIPTION
9	MODE	Press to select the Keypad mode. Modes are: Run mode (default on power-up), Programming mode, and Monitoring mode. Can also be used to go back to the previous menu.
10	Loc/Rem	Switches between Local and Remote modes.
11	ENT	Press to display a parameter's value or to save a changed value.
12	RUN LED	Illuminates when the Run key is enabled.
13	RUN	Pressing this key when the RUN LED is illuminated starts the drive controller.
14	STOP	Stop/reset key. In Local mode, pressing the STOP key causes the drive controller to stop based on the setting of parameter F721. In Remote mode, pressing the STOP key causes the drive controller to stop based on the setting of parameter F603. The display will indicate a flashing "E." If F735 is set to 0 (default setting), pressing the stop key twice will reset all resettable faults if the fault condition has been resolved.

Fig. K — Schneider Altivar 212 VFD Display Panel

INDEX

	INDEX	
Actual start-up 43 Alarms and alerts 62	Remote alarm and alert relays 42 Reverse rotation board 15	High-efficiency variable condenser fans (HEVCF) 27
Alarm codes 63-69	Scroll protection module (SPM) 8	Alarms, common 29
Alarm descriptions 71, 122-125	Scroll protection module inputs and	Alarms, details 68, 69
BACnet communication option 131-142	outputs 9	Danfoss VLT required
Boards 17	Scrolling marquee display 4	configurations 27
Board addresses 17	Temperature reset 32	Fan drive operation 27
Capacity control 21 Capacity control overrides 24	Cooler head bolts Tightening 57-59	Parameters, 6-fan circuits 28 Parameters, common 28
Compressor stages and circuit	Cooler protection 56	Parameters reset at power cycle 28
cycling 22, 23	Chilled water flow switch 57	High-side protection 60
Compressor starts and run hours 21	Flow rate 57	Local display tables 94-106
CCN	Freeze protection 56	Loss of fluid flow protection 56
ComfortLink CCN communication	Loss of fluid flow protection 56	Low ambient head pressure control 27
wiring 17, 18	Low fluid temperature 56	Danfoss VLT required
Interface 17 CCN alarm description 122-125	Plug components 56	configurations 27 Siemens or Schneider operating
CCN control 30	Tightening cooler head bolts 57-69 Tube plugging 56	instructions 143-148
CCN global schedule 30	Cooler pump control 29	Low fluid temperature 56
CCN tables 107-121	Cooling set point selection 31	Machine control 30
Chilled water flow switch 57	4 to 20 mA input 31	Maintenance 61, 62, 127-130
Compressor protection 60	Configuration set point limits 31	Minimum and maximum cooler flow rates
Compressors 61	Control methods and cooling set points	table (sizes 060-300) 45
Oil charge 61 Replacement 61	table 31	Minimum and maximum cooler flow rates table (sizes 315-390) 45
System burnout cleanup procedure 61	Dual switch 31 Ice mode 31	Minimum fluid loop volume 44
Condenser coils	Set point 1 31	Modular unit combinations 3
Cleaning round tube plate fin coils 57	Set point 2 31	Navigator display 4
Cleaning MCHX coils 60	Set point occupancy 32	Alarms mode 106
Condenser fans 60	Crankcase heaters 61	Configuration mode 100-102
Configuration point description conven-	Demand limit 40	Inputs mode 98
tions 3	switch controlled 40	Operating mode 106
Configuration set point limits 31 Control methods 30	switch controlled configuration	Outputs mode 99 Password 5
CCN control 31	table 41 CCN controlled 42	Pressure mode 97
CCN global schedule 30	Externally powered 41	Run status mode 94, 95
Switch control 30	Externally powered demand limit	Service test mode 96
Time schedule 30	configuration table 41	Set points mode 98
Unit run status 31	Electronic expansion valve 9, 53	Temperature mode 97
Controls 6-43	Cutaway view of 54	Time clock mode 103-105
Board addresses 17 Capacity control 21	Filter drier 55	Navigator module 4 Adjusting the backlight brightness 5
Carrier Comfort Network®	Inspecting/opening 54 Installing motor 54	Adjusting the contrast 5
interface 17	Liquid line service valve 55	Operating limitations 44
ComfortLink display menu structure 5	Moisture liquid indicator 54,55	Flow rate requirements 44
Configuring the master chiller 19	Troubleshooting procedure 53	Minimum and maximum cooler flow
Configuring the slave chiller 20	Flow rate 57	rates (sizes 060-300) 45
Control methods 30 Control module communication 17	Freeze protection 56	Minimum and maximum cooler flow rates (sizes 315-390) 45
Cooler pump control 29	Head pressure control 25 Fan staging 26	Minimum fluid loop volume 44
Demand limit 40	High efficiency variable	Voltage 44
Dual chiller control 18	condenser (HEVCF) 27	Plug components 56
Electronic expansion valve (EXV)	Low ambient 27	Recommended maintenance schedule
Board 9,10	Standard unit 25	61, 62, 127-130 Participant simulity (0)
Emergency on/off switch 15 Enable-off-remote contact switch 15	Heat Reclaim Option 48 EMM Board 16	Refrigerant circuit 60 Refrigerant feed components
Energy management module	Mode 14 47	Electronic expansion valve 53
(EMM) 15, 16	Operation 49	Relief devices 60
Energy management module (EMM)	Control Schematic 93	High-side protection 60
inputs and outputs 16	Local Display Table 97	Low-side protection 60
EXV1 board inputs and outputs 9	CCN Display Table 111	Safety considerations 2, 3
EXV2 inputs and outputs 11	Alarm Code Co.04 64, 72	Safety devices 60
Fan board 1 outputs 12 Fan board 2 outputs 13	Alarm Code P.15 66, 75	Compressor protection 60 Crankcase heaters 60
Fan board 3 inputs and outputs 14	Alarm Code P.34 66, 76 Alarm Code P.35 66, 76	Scrolling marquee display 4
Fan boards 10	Alarm Code Pr.07 67, 77	Alarms mode 106
General 3-5	Alarm Code th.08 67, 77	Configuration mode 100-102
Heat reclaim 48	Alarm Code th.09 67, 78	Display menu structure 5
Local equipment network 17	Alarm Code th.18, 19 67, 78	Inputs mode 98
Low ambient head pressure control 27, 143-148	HEVCF. See High-efficiency variable con-	Operating mode 106 Outputs mode 99
Machine control 30	denser fans	Password 4
Main Base Board 6		Pressure mode 97
Main Base Board inputs and outputs 7		Run status mode 94, 95
Minimum load control 18		Service test mode 96
Minutes off time 18		Set points mode 98
Navigator TM module 4		Temperature mode 97 Time clock mode 103-105
Ramp loading 18		Time clock mode 103-105

Service 53-61 Coil maintenance and cleaning 57 Compressors 61 Condenser fans 60 Cooler protection 56 Electronic expansion valve (EXV) 53 MCHX (microchannel) 60 Refrigerant circuit 60 Relief devices 60 RTPF (round tube, plate fin) 57 Safety devices 60 Start-up 43, 44 Actual start-up 43 Operating limitations 44 Pre-start-up 43 System check 43 Start-up and operation. See Start-up Checklist Start-up checklist CL-1 to Cl-10 Switch control 30 System check 43 Temperature limits Standard units 44 Low ambient operation 44 Temperature reset 32 4 to 20mA temperature reset 32, 37 4 to 20mA temperature reset configuration table 39 Chilled water temperature control 33 Outdoor air temperature reset 34 Outdoor air temperature reset configuration table 36 Space temperature reset 37 Space temperature reset configuration 38 Water temperature difference reset configuration 35 Thermistors 78 Compressor suction gas temperature 79 Condensing entering fluid sensor 79 Condensing leaving fluid sensor 79 Cooler entering fluid sensor 79 Cooler leaving fluid sensor 79 Dual chiller LWT 79 Outdoor air temperature 79 Remote space temperature 79 Subcooled condenser gas temperature 79 Typical space temperature sensor wiring 80 Time schedule 30 Transducers 79 Troubleshooting 62-93 Sensors 78 Service test 83 Thermistors 78 Transducers 79

Tube plugging 56 Variable speed fan motors Alarm details 68, 69

START-UP CHECKLIST FOR 30RB LIQUID CHILLER

PROJECT INFORMATION Job Name	9	Sales Office		
Address		Sales OfficeStart-Up Performed By		
Address State	Zip			
Installing Contractor		Unit		
		Model		
		Serial		
PRELIMINARY EQUIPMENT C	HFCK (This section to I	ne completed by insta	lling contractor)	
1. Is there any physical damage?		□ Yes		
a. If yes, was it noted on the freight b	oill and has a claim been filed wi		□ No	
b. Will this prevent start-up?	on and has a claim seen mea w	□ Yes	□ No	
Description			_ 110	
			П. N.	
2. Unit is installed level as per the insta		□ Yes	□ No	
3. Power supply agrees with the unit na		☐ Yes	□ No	
4. Correct control voltagevac			□ No	
5. Electrical power wiring is installed p	property.	☐ Yes	□ No	
6. Unit is properly grounded.	-i4 1 i4-11 1 1	□ Yes	□ No	
7. Electrical circuit protection has been		□ Yes	□ No	
8. Crankcase heaters energized for 24 h	-	☐ Yes	□ No	
9. Will this machine be controlled by a	1 5 6		□ No	
If yes, will the controls contractor be	e present at start-up?	☐ Yes	□ No	
Chilled Water System Check	(This section to be com		•	
1. All chilled water valves are open.		☐ Yes	□ No	
2. All piping is connected properly.		□ Yes	□ No	
3. All air has been purged from the syst		□ Yes	□ No	
4. Chilled water pump is operating with		□ Yes		
5. Chilled water pump starter interlocked		☐ Yes	□ No	
6. Units without hydronic package, and	l units with hydronic package			
installed on an open loop: inlet pipin within 10 ft. of unit.	ig to cooler includes a 20 mesh s	trainer Yes	□ No	
7. Water loop volume greater than 3 ga	1/ton for air conditioning	□ Yes	□ No	
or 6 gal/ton for process cooling and	low ambient operation.	□ 1 <i>c</i> s	L 110	
8. Has the water system been cleaned a		structions?		
9. Proper loop freeze protection provide		☐ Yes	□ No	
Antifreeze type	Concentration %.			
(If antifreeze solution is not utilized of				
minimum outdoor ambient is below:	32 F (0° C)			
then items 10, 11, and 12 have to be	completed to provide cooler			
freeze protection to –20 F. Refer to I for proper cooler winterization proce				
IMPORTANT: Adding antifreeze so	-	of		
protecting the unit from freeze-up if	the heater fails or electrical power			
interrupted or lost while temperature	s are below 32 F (0° C).			
10. Outdoor piping wrapped with electri	*	□ Yes	□ No	
11. Cooler heaters installed and operation		☐ Yes	□ No	
12. Is the unit equipped with low ambien	-	☐ Yes	□ No	
If yes, are wind baffles installed? (Re	equired if chiller will run below ?	\square Yes	□ No	
and be exposed to the wind)				

13. Are there any VFDs on the chilled water pumps?		☐ Yes	□ No
a. Primary loop		☐ Yes	□ No
b. Secondary loop		□ Yes	□ No
14. Chiller controls the pump(s)?		□ Yes	□ No
a. If yes, have the pump interlocks been wired?		□ Yes	□ No
Preliminary start-up complete.			
Installing/Mechanical Contractor	Date		

C. UNIT START-UP (Qualified individuals only. Factory start-up recommended!) Cooler Model Model Serial _____ Serial SPM Address Compressors A1) Model Model Serial _____ Serial SPM Address SPM Address A2) Model _____ Model Serial _____ Serial SPM Address SPM Address C2) A3) Model ____ Model _____ Serial SPM Address SPM Address C3) A4) Model _____ Model Serial Serial SPM Address SPM Address C4) B1) Model ____ Model ____ Serial _____ Serial SPM Address SPM Address NOTE: SPM = Scroll Protection Module B2) Model Serial **Hydronic Package** SPM Address P1) Model Serial P2) Model Serial _____ 1. All liquid line service valves located near EXVs are open. □ Yes □ No □ Yes 2. All discharge service valves are open. □ No 3. All suction service valves are open. □ Yes □ No 4. All compressor rack holddown bolts and the RED compressor □ Yes shipping brackets removed. \square No 5. Leak check unit. Locate, repair and report any refrigerant leaks. □ Yes □ No 6. All terminals are tight. □ Yes □ No 7. All plug assemblies are tight. □ Yes \square No 8. All cables, thermistors and transducers have been inspected for cross wires. □ Yes □ No 9. All thermistors are fully inserted into wells. □ Yes □ No 10. All armatures move freely on contactors. □ Yes □ No 11. Cooler heaters installed and operational if equipped. □ Yes □ No 12. Voltage at terminal block is within unit nameplate range. □ Yes □ No 13. Check voltage imbalance: A-B A-C B-C Average voltage = (A-B+A-C+B-C)/3Maximum deviation from average voltage = (A-B+A-C+B-C)/3Voltage imbalance = $\underline{\hspace{1cm}}$ % (max. deviation / average voltage) X 100 Is voltage imbalance less than 2%? □ Yes □ No (DO NOT start chiller if voltage imbalance is greater than 2%.

Contact local utility for assistance.)

14 37 'C 1 C				Пл	
14. Verify cooler flow rate			☐ Yes	□ No	
Pressure entering cooler	psig (kpa)				
Pressure leaving cooler	psig (kpa)				
Cooler pressure drop	psig (kpa)				
Psig x 2.31 ft/psi = $\frac{1}{2}$	ft of water				
$kPa \times 0.334 \text{ m/psi} =$	m of water				
Cooler flow rate gpm (· · · · · · · · · · · · · · · · · · ·	
Verify that isolation valves on f positioned and locked prior to	actory-installed pump pa start-up (slot in-line with	ackages are properly n piping on both sides o	☐ Yes of pump).	□ No	
16. Chilled water flow switch opera	itional.		☐ Yes	□ No	
Start and operate machine 1. Complete component test (make 2. Check refrigerant and oil charge 3. Record compressor and conden	e sure EXVs are checked e. Record charge informa	d after liquid line servic	e valves are opene	d).	
4. Record operating data.					
5. Provide operating instructions to	o owner's personnel. Inst	truction time1	hours		
	Circuit A	Circuit B	Circuit C		
Refrigerant Charge					
Additional charge required					
Oil Charge					
Indicate level in sight glass of compr Level should be $\frac{3}{4}$ - $\frac{7}{8}$ of a full sigh	essors A1, B1 and C1. it glass when off.				
Additional oil charge required.		A1	B1	C1	
Circuit A					
Circuit B			(())		
Circuit C					
		A2	B2	C2	
			-((()))		
		A3	В3	C3	
		A4	B4	C4	
Record Software Versions	;				

${\tt MODE-RUN\,STATUS}$

SUB-MODE	ITEM	DISPLAY	ITEM EXPANSION
	APPL		CSA-SR
	MARQ		
	EXV1		
VERS	EXV2		
	AUX1		
	AUX2		
	AUX3		

(Press ENTER and ESCAPE simultaneously to obtain software versions)

 $\label{lem:component} \textbf{Component Test} \ - \ \textbf{Complete the following tests to make sure all peripheral components are operational before the compressors are started.}$

MODE — **SERVICE TEST**

SUB-MODE	ITEM	DISPLAY	ITEM EXPANSION	ENTRY
TEST*	T.REQ	OFF/ON	Manual Sequence	
	CP.A1	OFF/ON	Compressor A1 Output	
	CP.A2	OFF/ON	Compressor A2 Output	
	CP.A3	OFF/ON	Compressor A3 Output	
	CP.A4	OFF/ON	Compressor A4 Output	
	HGB.A	OFF/ON	Hot Gas Bypass A Output	
	CP.B1	OFF/ON	Compressor B1 Output	
	CP.B2	OFF/ON	Compressor B2 Output	
	CP.B3	OFF/ON	Compressor B3 Output	
	CP.B4	OFF/ON	Compressor B4 Output	
	HGB.B	OFF/ON	Hot Gas Bypass B Output	
	CP.C1	OFF/ON	Compressor C1 Output	
	CP.C2	OFF/ON	Compressor C2 Output	
	CP.C3	OFF/ON	Compressor C3 Output	
	CP.C4	OFF/ON	Compressor C4 Output	
	HGB.C	OFF/ON	Hot Gas Bypass C Output	
QUIC†	Q.REQ	OFF/ON	Quick Test Mode	
	EXV.A	xxx%	Circuit A EXV % Open	
	EXV.B	xxx%	Circuit B EXV % Open	
	EXV.C	xxx%	Circuit C EXV % Open	
	FAN.A	X	Circuit A Fan Stages	
	FAN.B	X	Circuit B Fan Stages	
	FAN.C	X	Circuit C Fan Stages	
	SPD.A	xxx%	Circ A Varifan Position	
	SPD.B	xxx%	Circ B Varifan Position	
	SPD.C	xxx%	Circ C Varifan Position	
	FRV.A	OPEN/CLSE	Free Cooling Valve A	
	FRP.A	OFF/ON	Refrigerant Pump Out A	
	FRV.B	OPEN/CLSE	Free Cooling Valve B	
	FRP.B	OFF/ON	Refrigerant Pump Out B	
	FRV.C	OPEN/CLSE	Free Cooling Valve C	
	FRP.C	OFF/ON	Refrigerant Pump Out C	
	RV.A	OPEN/CLSE	4 Way Valve Circuit A	
	RV.B	OPEN/CLSE	4 Way Valve Circuit B	
	BOIL	OFF/ON	Boiler Command	
	HR1.A	OPEN/CLSE	Air Cond Enter Valve A	
	HR2.A	OPEN/CLSE	Air Cond Leaving Valve A	
	HR3.A	OPEN/CLSE	Water Cond Enter Valve A	
	HR4.A	OPEN/CLSE	Water Cond Leaving Valve A	
	HR1.B	OPEN/CLSE	Air Cond Enter Valve B	
	HR2.B	OPEN/CLSE	Air Cond Leaving Valve B	
	HR3.B	OPEN/CLSE	Water Cond Enter Valve B	
	HR4.B	OPEN/CLSE	Water Cond Leaving Valve B	
	PMP.1	OFF/ON	Water Exchanger Pump 1	
	PMP.2	OFF/ON	Water Exchanger Pump 2	
	CND.P	OFF/ON	Reclaim Condenser Pump	
	CL.HT	OFF/ON	Cooler Heater Output	
	CP.HT	OFF/ON	Condenser Heater Output	

^{*}Place the Enable/Off/Remote Contact switch to the Off position prior to configuring *T.REQ* to ON. Configure the desired item to ON, then place the Enable/Off/Remote Contact switch to the Enable position.
†Place the Enable/Off/Remote Contact switch to the Off position prior to configuring *Q.REQ* to ON. The switch should be in the Off position

to perform Quick Test.

CUT ALONG DOTTED LINE

CUT ALONG DOTTED LINE

MODE — **SERVICE TEST** (cont)

SUB-MODE	ITEM	DISPLAY	ITEM EXPANSION	ENTRY
QUIC†(cont)	CH.A1	OFF/ON	Compressor A1 Heater	
	CH.A2	OFF/ON	Compressor A2 Heater	
	CH.A3	OFF/ON	Compressor A3 Heater	
	CH.A4	OFF/ON	Compressor A4 Heater	
	CH.B1	OFF/ON	Compressor B1 Heater	
	CH.B2	OFF/ON	Compressor B2 Heater	
	CH.B3	OFF/ON	Compressor B3 Heater	
	CH.B4	OFF/ON	Compressor B4 Heater	
	CH.C1	OFF/ON	Compressor C1 Heater	
	CH.C2	OFF/ON	Compressor C2 Heater	
	CH.C3	OFF/ON	Compressor C3 Heater	
	CH.C4	OFF/ON	Compressor C4 Heater	
	HGB.A	OFF/ON	Hot Gas Bypass A Output	
	HGB.B	OFF/ON	Hot Gas Bypass B Output	
	HGB.C	OFF/ON	Hot Gas Bypass C Output	
	Q.RDY	OFF/ON	Chiller Ready Status	
	Q.RUN	OFF/ON	Chiller Running Status	
	SHUT	OFF/ON	Customer Shut Down Stat	
	CATO	XX.X	Chiller Capacity 0-10v	
	ALRM	OFF/ON	Alarm Relay	
	ALRT	OFF/ON	Alert Relay	
	C.ALM	OFF/ON	Critical Alarm Relay	

^{*}Place the Enable/Off/Remote Contact switch to the Off position prior to configuring *T.REQ* to ON. Configure the desired item to ON, then place the Enable/Off/Remote Contact switch to the Enable position.
†Place the Enable/Off/Remote Contact switch to the Off position prior to configuring *Q.REQ* to ON. The switch should be in the Off position to perform Quick Test.

Operating Data:

Record the following information from the Run Status, Temperatures and Outputs Modes when machine is in a stable operating condition. If cooling load is insufficient, these readings must be obtained by putting the chiller in test mode (Service Test) and running each compressor.

TEMPERATURES							
COOLER ENTERING FLUID	EWT						
COOLER LEAVING FLUID	LWT						
CONTROL POINT	СТРТ						
CAPACITY	C + D						
OUTSIDE AIR TEMPERATURE	OAT						
LEAD/LAG LEAVING FLUID	CHWS						
OPTIONAL HEAT RECLAIM	C11 \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	(Buai cilinoi	control only)				
ENTERING WATER TEMPERATUR	E HEWT						
LEAVING WATER TEMPERATURE							
ELITATION WITTER TEMPERATURE							
Install a manifold gage set to obtain reading	os and verify these	e against pressure transduc	ers				
	CUIT B	CIRCUIT C	C13.				
SCT.A SCT.B SCT.B		SCT.CSST.C					
SST.A SST.B SCT.P							
SGT.A SGT.B	 	SGT.C					
	 	SUP.C					
		EXV.C					
NOTE: EXV A,B,C positions are found in	n the output mode.	•					
COMPRESSOR MOTOR CURRENT							
L1 L2	2 L3						
COMPRESSOR A1	E ES						
COMPRESSOR A2							
COMPRESSOR A3	n (
COMPRESSOR A4	- 						
COMPRESSOR B1							
COMPRESSOR B2							
COMPRESSOR B3							
COMPRESSOR B4							
COMPRESSOR C1							
COMPRESSOR C2 COMPRESSOR C3							
COMPRESSOR C4							
COMPRESSOR C4							
CONDENSER FAN MOTOR CURREN	т						
CONDENSER FAIN MOTOR CURREN	1						
L1 L2	L3		L1	L2	L3		
FAN MOTOR 1		FAN MOTOR 10					
FAN MOTOR 2		FAN MOTOR 11					
FAN MOTOR 3		FAN MOTOR 12					
FAN MOTOR 4		FAN MOTOR 13					
FAN MOTOR 5		FAN MOTOR 14					
FAN MOTOR 6		FAN MOTOR 15					
FAN MOTOR 7		FAN MOTOR 16					
FAN MOTOR 8		FAN MOTOR 17					
FAN MOTOR 9		FAN MOTOR 18					
·							

Record Configuration Information

MODE — **CONFIGURATION**

SUB-MODE	ITEM	DISPLAY	ITEM EXPANSION	ENTRY
DISP	TEST	OFF/ON	Test Display LED's	
	METR	US-METR	Metric Display	
IN.U.T	LANG	X	Language	
UNIT	TYPE	X	Unit Type	
	TONS	XXX	Unit Size NB Fan on Varifan CIR A	
	VAR.A VAR.B	X	NB Fan on Varifan CIR A NB Fan on Varifan CIR B	
	VAR.C	X X	NB Fan on Varifan CIR C	
	HGBP	X	Hot Gas Bypass Control	
	60HZ	NO/YES	60 Hz Frequency	
	RECL	NO/YES	Heat Reclaim Select	
	EHS	X	Electric Heater Stage	
	EMM	NO/YES	EMM Module Installed	
	PAS.E	DSBL/ENBL	Password Enable	
	PASS	XXXX	Password Protection Must be Disabled	
	FREE	NO/YES	Free Cooling Select	
	PD4.D	NO/YES	Pro_Dialog Users Display	
	BOIL	OFF/ON	Boiler Command Select	
	VLT.S	X	VLT Fan Drive Select	
	RPM.F	XXXX	VLT Fan Drive RPM	
	MCHX	NO/YES	MCHX Exchanger Select	
	FC	X	Factory Country Code	
	VFDV	XXX	VFD Voltage for USA	
SERV	FLUD	X	Cooler Fluid Type	
	MOP	XX.X	EXV MOP Setpoint	
	HP.TH	XXX.X	High Pressure Threshold	
	SHP.A	XX.X	Circuit A Superheat Setp	
	SHP.B	XX.X	Circuit B Superheat Setp	
	SHP.C	XX.X	Circuit C Superheat Setp	
	HTR	xx.x	Cooler Heater DT Setp	
	EWTO	NO/YES	Entering Water Control	
	AU.SM	NO/YES	Auto Start When SM Lost	
	вотн	NO/YES	HSM Both Command Select	
	LLWT	xx	Brine Min. Fluid Temp.	
	LOSP	xx.x	Brine Freeze Setpoint	
	HD.PG	XX.X	Varifan Proportion Gain	
	HD.DG	XX.X	Varifan Derivative Gain	
	HD.IG	XX.X	Varifan Integral Gain	
	HR.MI	XXX.X	Reclaim Water Valve Min	
	HR.MA	XXX.X	Reclaim Water Valve Max	
	AVFA	NO/YES	Attach Drive to Fan A	
	AVFB	NO/YES	Attach Drive to Fan B	
	AVFC	NO/YES	Attach Drive to Fan C	
OPTN	CCNA	XXX	CCN Address	
	CCNB	XXX	CCN Bus Number	
	BAUD	х	CCN Baud Rate	
	LOAD	Х	Loading Sequence Select	
	LLCS	х	Lead/Lag Circuit Select	
	RL.S	ENBL/DSBL	Ramp Load Select	
	DELY	XX	Minutes Time Off	
	ICE.M	ENBL/DSBL	Ice Mode Enable	
	PUMP	Х	Cooler Pumps Sequence	
	ROT.P	XXXX	Pump Rotation Delay	
	PM.PS	NO/YES	Periodic Pump Start	
	P.SBY	NO/YES	Stop Pump in Standby	
	P.LOC	NO/YES	Flow Checked if Pump Off	
	LS.ST	XX.XX	Night Low Noise Start	
	LS.ND	XX.XX	Night Low Noise End	
	LS.LT	XXX	Low Noise Capacity Lim	
	OA.TH	XX.X	Heat Mode OAT Threshold	
	FREE	XX.X	Free Cooling OAT Limit	
	BO.TH	XX.X	Boiler OAT Threshold	
	EHST	XX.XX	Elec Stag OAT Threshold	
	EHSB	NO/YES	Last Heat Elec Backup	
	E.DEF	NO/YES	Quick EHS in Defrost	
	EHSP	XX	Elec Heat Pulldown	
	AUTO	NO/YES	Auto Changeover Select	

MODE — CONFIGURATION (cont)

SUB-MODE	ITEM	DISPLAY	ITEM EXPANSION	ENTRY
RSET	CRST	х	Cooling Reset Type	
	HRST	х	Heating Reset Type	
	DMDC	х	Demand Limit Select	
	DMMX	XX.X	mA for 100% Demand Lim	
	DMZE	XX.X	mA for 0% Demand Limit	
	MSSL	х	Master/Slave Select	
	SLVA	XXX	Slave Address	
	LLBL	ENBL/DSBL	Lead/Lag Balance Select	
	LLBD	XXX	Lead/Lag Balance Delta	
	LLDY	XX	Lag Start Delay	
	LAGP	х	Lag Unit Pump Select	
	LPUL	XX	Lead Pulldown Time	

MODE — SETPOINT

SUB-MODE	ITEM	DISPLAY	ITEM EXPANSION	ENTRY
COOL	CSP.1	xxx.x	Cooling Setpoint 1	
	CSP.2	xxx.x	Cooling Setpoint 2	
	CSP.3	XXX.X	Ice Setpoint	
	CRV1	XX.X	Current No Reset Value	
	CRV2	XX.X	Current Full Reset Value	
	CRT1	xxx.x	Delta T No Reset Temp	
	CRT2	xxx.x	Delta T Full Reset Value	
	CRO1	xxx.x	OAT No Reset Temp	
	CRO2	xxx.x	OAT Full Reset Temp	
	CRS1	xxx.x	Space T No Reset Temp	
	CRS2	xxx.x	Space T Full Reset Temp	
	DGRC	XX.X	Degrees Cool Reset	
	CAUT	XX.X	Cool Changeover Setpt	N/A
	CRMP	x.x	Cool Ramp Loading	
IEAT	HSP.1	XXX.X	Heating Setpoint 1	N/A
H	HSP.2	xxx.x	Heating Setpoint 2	N/A
	HRV1	XX.X	Current No Reset Val	N/A
HRT	HRV2	XX.X	Current Full Reset Val	N/A
	HRT1	xxx.x	Delta T No Reset Temp	N/A
	HRT2	XXX.X	Delta T Full Reset Temp	N/A
	HRO1	xxx.x	OAT No Reset Temp	N/A
	HRO2	xxx.x	OAT Full Reset Temp	N/A
HAL	DGRH	XX.X	Degrees Heat Reset	N/A
	HAUT	XX.X	Heat Changeover Setpt	N/A
	HRMP	x.x	Heat Ramp Loading	N/A
MISC	DLS1	XXX	Switch Limit Setpoint 1	
	DLS2	xxx	Switch Limit Setpoint 2	
	DLS3	xxx	Switch Limit Setpoint 3	
	RSP	xxx.x	Heat Reclaim Setpoint	
	RDB	XX.X	Reclaim Deadband	

MODE — OPERATING MODE

SUB-MODE	ITEM	DISPLAY	ITEM EXPANSION	ENTRY
SLCT	OPER	х	Operating Control Type	
	SP.SE	x	Setpoint Select	
	HC.SE	х	Heat Cool Select	
	RL.SE	х	Reclaim Select	

COMMENTS:		
SIGNATURES:		
Start-up Technician	Date	
Customer		
Representative	Date	