

39SH,SV,SM,SR00-17 Indoor and Outdoor Air Handlers

Installation, Start-Up and Service Instructions

CONTENTS

]	Page
SAFETY CONSIDERATIONS	1.2
INTRODUCTION	2 - 17
Unit Identification	2
PREINSTALLATION	8 19
Rigging	
Shipping Bolt and Screw Removal	18
Unit Suspension	18
Service Clearance	18
Condensate Drain.	18
External Vibration Isolators	18
INSTALLATION 19	a_{23}
Condensate Drain.	10
Bottom Return Economizer Package (BREP) and	. 17
Harizantal Battam Baturn Faanamizar	
Package (HBREP)	10
Motorized Outside Air Damper	. 17
Motorized Outside Air Damper Mixing Box Actuator (for 39SH and 39SM Horizon	. 22 ntol
Poturn Unite Only)	າເ a ວວ
Return Units Only) MIXING BOX ACTUATOR ASSEMBLY	. 23
MIAINU DUA ACTUATUK ASSEMIDLI	
ACTUATOR INSTALLATION Mixing Box Air Sensor	25
	. 25
• MIXING BOX MIXED AIR SENSOR BRACKET	
ASSEMBLY	
MIXED AND OUTSIDE AIR SENSORS	
INSTALLATION	
Mixing Box.	. 25
 MIXING BOX LINKAGE INSTALLATION 	
(39SH Sizes 00-03)	
 MIXING BOX LINKAGE INSTALLATION 	
(Sizes 04-17)	
Install Sheaves on Motor and Fan Shafts	. 27
ALIGNMENT	
Install V-Belts Water and Steam Coil Piping Recommendations	. 28
Water and Steam Coil Piping	
Recommendations	. 29
• GENERAL	
WATER COILS	
STEAM COILS	
Coil Freeze-Up Protection	31
Refrigerant Piping, Direct Expansion	1
(DX) Coils	32
Electric Heaters	. 32
Motor Stop/Start Stations	. 33
START-UP	
Check List	. 54
SERVICE 3	. 34
	+,55
General	. 34
	. 34
	. 34
DETERGENT Winter Shutdown (Chilled Water Cail Only)	2.4
Winter Shutdown (Chilled Water Coil Only)	. 34
ANTIFREEZE METHODS OF COIL PROTECTION	N
AIR DRYING METHOD OF COIL PROTECTION	
• PIPING	

Filters	
FILTER SECTIONS	
Lubrication	35
• MOTORS	

Page

BEARINGS

SAFETY CONSIDERATIONS

Air-handling equipment is designed to provide safe and reliable service when operated within design specifications. To avoid injury to personnel and damage to equipment or property when operating this equipment, use good judgment and follow safe practices as outlined below.

NEVER enter an enclosed fan cabinet or reach into a unit while the fan is running.

LOCK OPEN AND TAG the fan motor power disconnect switch before working on a fan. Take fuses with you and note removal on tag. Electric shock can cause personal injury or death.

LOCK OPEN AND TAG the electric heat coil power disconnect switch before working on or near heaters.

Failure to follow these warnings could lead to personal injury or death.

CHECK the assembly and component weights to be sure that the rigging equipment can handle them safely. Note also, the centers of gravity and any specific rigging instructions.

CHECK for adequate ventilation so that fumes will not migrate through ductwork to occupied spaces when welding or cutting inside air-handling unit cabinet or plenum.

WHEN STEAM CLEANING COILS be sure that the area is clear of personnel.

DO NOT attempt to handle access covers and removable panels on outdoor units when winds are strong or gusting until you have sufficient help to control them. Make sure panels are properly secured while repairs are being made to a unit.

DO NOT remove access panel fasteners until fan is completely stopped. Pressure developed by a moving fan can cause excessive force against the panel which can injure personnel.

DO NOT work on dampers until their operators are disconnected.

BE SURE that fans are properly grounded before working on them.

Failure to follow these warnings could result in personal injury or equipment damage.

INTRODUCTION

SECURE drive sheaves with a rope or strap before working on a fan to ensure that rotor cannot free-wheel.

DO NOT restore power to unit until all temporary walkways inside components have been removed.

NEVER pressurize equipment in excess of specified test pressures.

PROTECT adjacent flammable material when welding or flame cutting. Use sheet metal or asbestos cloth to contain sparks. Have a fire extinguisher at hand and ready for immediate use.

Failure to follow these warnings could result in personal injury or equipment damage.

Unit Identification — The 39S units are identified by the 18-digit part number listed on the serial plate. The part number describes all component, coil, motor, drive, and control selections.

For further information on unit and component identification, contact your Carrier representative for the AHUBuilder® program. Refer to the 39S Product Data catalog for more information on individual component sections. Refer to Tables 1-4 and Fig. 1-13 for component data.

Table 1 — Physical Data — 39SH Co	oil and Filter Data
-----------------------------------	---------------------

		r				r	1		r	
39SH UNIT SIZE	00	01	02	03	04	05	07	09	13	17
CHILLED WATER										
Nominal Capacity at 400 fpm (cfm) Face Area (sq ft) Coil Connection Size (in. OD sweat)	632 1.58	716 1.79	800 2	1224 3.06	1612 4.03	2000 5	2916 7.29	3832 9.58	5500 13.75	7084 17.71
4 Row (Qty) 6 Row (Qty)	³ / ₄ 3/ ₄	3/ ₄ 3/ ₄	3/ ₄ 3/ ₄	3/ ₄ 7/ ₈	7/ ₈ 11/ ₈	1 ¹ / ₈ 1 ¹ / ₈	1 ¹ / ₈ 1 ³ / ₈	1 ³ / ₈ 1 ⁵ / ₈	1 ³ / ₈ 1 ⁵ / ₈	1 ⁵ / ₈ (2) 1 ⁵ / ₈ (2)
HOT WATER										
Nominal Capacity at 400 fpm (cfm) Face Area (sq ft) Coil Connection Size (in. OD sweat)	632 1.58	716 1.79	624 1.56	956 2.39	1612 4.03	2000 5	2688 6.72	3544 8.86	5348 13.37	6640 16.6
1 Row 2 Row (Qty) 4 Row* (Qty) 6 Row* (Qty)	5/ ₈ 7/ ₈ 3/ ₄ 3/ ₄	5/ ₈ 7/ ₈ 3/ ₄ 3/ ₄	5/ ₈ 7/ ₈ 3/ ₄ 3/ ₄	5/ ₈ 7/ ₈ 3/ ₄ 7/ ₈	7/ ₈ 7/ ₈ 7/ ₈ 1 ¹ /8	7/8 1 ¹ /8 1 ¹ /8 1 ¹ /8	N/A 1 ¹ / ₈ 1 ¹ / ₈ 1 ³ / ₈	N/A 1 ³ / ₈ 1 ³ / ₈ 1 ⁵ / ₈	N/A 1 ³ / ₈ 1 ³ / ₈ 1 ⁵ / ₈	N/A 1 ⁵ / ₈ (2) 1 ⁵ / ₈ (2) 1 ⁵ / ₈ (2)
DIRECT EXPANSION										. , , , , , , , , , , , , , , , , , , ,
Nominal Capacity at 400 fpm (cfm) Face Area (sq ft) Connection Size (in. OD sweat) (Qty)	452 1.13	476 1.19	820 2.05	1220 3.05	1612 4.03	2000 5	2864 7.16	4088 10.22	5500 13.75	6640 16.6
Liquid Line	1/4	1/4	3/8	3/8	1/2	1/2	^{5/} 8†, ¹ /2** (2)	^{5/} 8 [†] , ¹ /2 ^{**} (2)	1/2** (2)	⁵ / ₈ ** (2)
Suction Line	3/4	3/4	3/4	3/4	7/ ₈	1 ¹ /8	$1^{1/_8}$ †, $7/_8^{**}$ (2)	1 ³ / ₈ †, ⁷ / ₈ ** (2)	1 ¹ / ₈ ** (2)	1 ³ /8** (2)
STEAM										
Nominal Capacity at 400 fpm (cfm) Face Area (sq ft)	632 1.58	716 1.79	752 1.88	1144 2.86	1452 3.63	1800 4.5	2688 6.72	3640 9.1	5512 13.78	7000 17.5
FILTER DATA										
Size (in.) (Qty)	12x25	12x25	16x32	16x32	20x20 (2)	20x20 (2)	16x32 (2) 20x32 (1)	16x32 (2) 20x32 (1)	20x25 (2) 20x20 (4)	16x20 (2) 16x25 (2) 20x20 (2) 20x25 (2)
Nominal Face Area (sq ft)	2.08	2.08	3.56	3.56	5.56	5.56	11.56	11.56	18.06	22.5

*4 and 6 row hot water coils have the same face area as 4 and 6 row

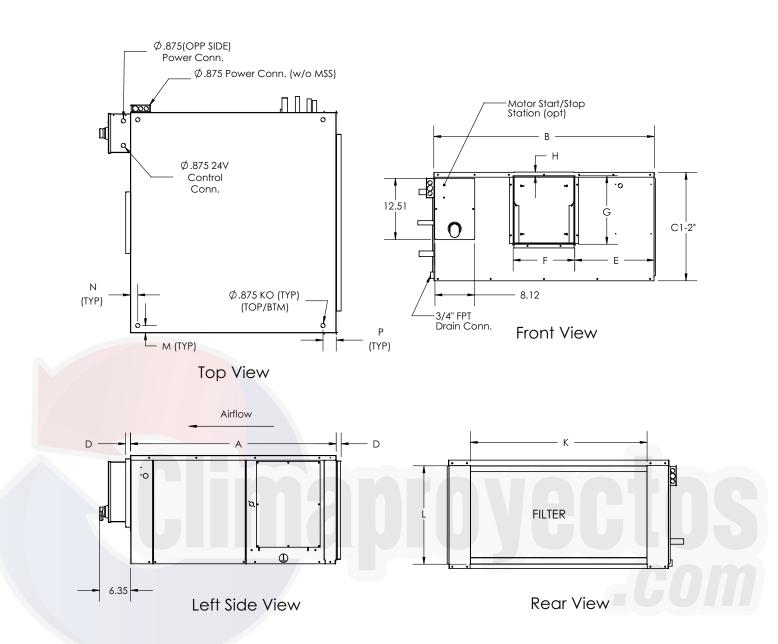
chilled water coils.

**Dual circuited coil.

39SV UNIT SIZE	02	03	04	05	07	09
CHILLED WATER						
Nominal Capacity at 400 fpm (cfm) Face Area (sq ft) Coil Connection Size (in. OD sweat)	1200 3 ^{3/4}	1200 3 ^{3/} 4	1600 4 ⁷ / ₈	2000 5 1 ¹ /8	2932 7.33 1 ¹ / ₈	3668 9.17 1 ³ /8
HOT WATER						
Nominal Capacity at 400 fpm (cfm) Face Area (sq ft) Coil Connection Size (in. OD sweat)	804 2.01 ⁷ /8	804 2.01 ⁷ / ₈	964 2.41 ⁷ / ₈	1276 3.19 1 ¹ /8	2292 5.73 1 ¹ /8	3124 7.81 1 ¹ /8
DIRECT EXPANSION						
Nominal Capacity at 400 fpm (cfm) Face Area (sq ft) Connection Size (in. OD sweat) (Qty)	1200 3	1200 3	1600 4	2000 5	2932 7.33	3668 9.17
Liquid Line Suction Line	3/ ₈ 3/ ₄	3/ ₈ 3/ ₄	1/ ₂ 7/ ₈	1/2 11/8	5/8 1 ¹ /8	^{1/} 2 (2) ^{7/} 8 (2)
STEAM						
Nominal Capacity at 400 fpm (cfm) Face Area (sq ft)	624 1.56	624 1.56	688 1.72	1268 3.17	1750 4.375	2452 6.13
FILTER DATA						
Size (in.) (Qty) Nominal Face Area (sq ft)	20x20 2.78	20x20 2.78	22.5x22.5 3.52	16x25 (2) 5.56	20x25 (4) 13.89	20x25 (4) 13.89

Table 2 — Physical Data — 39SV Coil and Filter Data

Table 3 — Physical Data — 39SM Coil and Filter Data


39SM UNIT SIZE	04	05	07	09	13	17
CHILLED WATER						
Nominal Capacity at 400 fpm (cfm) Face Area (sq ft) Coil Connection Size (in. OD sweat)	1668 4.17	2084 5.21	2776 6.94	3332 8.33	5000 12.5	7084 17.71
4 Row (Qty) 6 Row (Qty)	^{7/} 8 1 ^{1/} 8	1 ^{1/} 8 1 ^{1/} 8	1 ^{1/} 8 1 ^{3/} 8	1 ^{3/} 8 1 ^{5/} 8	1 ^{3/} 8 1 ^{5/} 8	1 ^{5/} 8 (2) 1 ^{5/} 8 (2)
HOT WATER						
Nominal Capacity at 400 fpm (cfm) Face Area (sq ft) Coil Connection Size (in. OD sweat)	1668 4.17	2084 5.21	2776 6.94	3332 8.33	5000 12.5	7084 17.71
2 Row (Qty) 4 Row* (Qty) 6 Row* (Qty)	7/ ₈ 7/ ₈ 11/ ₈	1 ^{1/} 8 1 ^{1/} 8 1 ^{1/} 8	1 ^{1/} 8 1 ^{1/} 8 1 ^{3/} 8	1 ¹ / ₈ 1 ³ / ₈ 1 ⁵ / ₈	1 ¹ / ₈ 1 ³ / ₈ 1 ⁵ / ₈	1 ¹ / ₈ (2) 1 ⁵ / ₈ (2) 1 ⁵ / ₈ (2)
DIRECT EXPANSION						
Nominal Capacity at 400 fpm (cfm) Face Area (sq ft) Connection Size (in. OD sweat)	1668 4.17	2000 5	2668 6.67	3332 8.33	5000 12.5	7000 17.5
Liquid Line Suction Line	1/ ₂ 7/ ₈	1/ ₂ 11/ ₈	⁵ / ₈ 1 ¹ / ₈	⁵ /8 1 ³ /8	⁵ / ₈ 1 ³ / ₈	⁵ / ₈ (2) 1 ⁵ / ₈ (2)
STEAM						
Nominal Capacity at 400 fpm (cfm) Face Area (sq ft)	1492 3.73	1960 4.9	2472 6.18	3028 7.57	4752 11.88	6700 16.75
FILTER DATA						
Size (in.) (Qty)	20x25 (2)	20x25 (2)	16x25 (4)	16x25 (4)	16x20 (2) 20x20 (2) 16x25 (2) 20x25 (2)	16x20 (2) 20x20 (2) 16x25 (2) 20x25 (2)
Nominal Face Area (sq ft)	6.94	6.94	11.11	11.11	22.5	22.5

 $^{\ast}4$ and 6 row hot water coils have the same face area as 4 and 6 row chilled water coils.

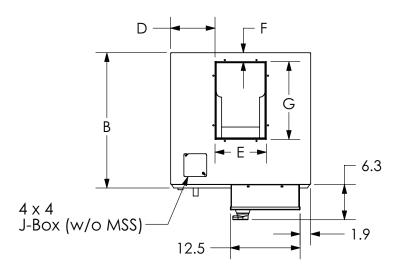
39SR UNIT SIZE	02	03	04	05	07	09	13	17					
CHILLED WATER													
Nominal Capacity at 400 fpm (cfm) Face Area (sq ft) Coil Connection Size (in. OD sweat)	800 2	1224 3.06	1612 4.03	2000 5	3252 8.13	3792 9.48	5124 12.81	7000 17.5					
4 Row 6 Row	3/ ₄ 3/ ₄	3/ ₄ 7/ ₈	7/ ₈ 1 ^{1/} 8	1 ^{1/} 8 1 ^{1/} 8	1 ^{3/} 8 1 ^{5/} 8	1 ^{3/} 8 1 ^{5/} 8	1 ^{3/} 8 1 ^{5/} 8	1 ^{3/} 8 1 ^{5/} 8					
HOT WATER													
Nominal Capacity at 400 fpm (cfm) Face Area (sq ft) Coil Connection Size (in. OD sweat)	624 1.56	956 2.39	1612 4.03	2000 5	3252 8.13	3792 9.48	5124 12.81	7000 17.5					
2 Row 4 Row* 6 Row*	5/ ₈ 3/ ₄ 3/ ₄	7/ ₈ 3/ ₄ 7/ ₈	7/ ₈ 7/ ₈ 1 ^{1/} 8	1 ^{1/} 8 1 ^{1/} 8 1 ^{1/} 8	1 ¹ / ₈ 1 ³ / ₈ 1 ⁵ / ₈	1 ¹ / ₈ 1 ³ / ₈ 1 ⁵ / ₈	1 ³ / ₈ 1 ³ / ₈ 1 ⁵ / ₈	1 ¹ / ₈ 1 ³ / ₈ 1 ⁵ / ₈					
DIRECT EXPANSION													
Nominal Capacity at 400 fpm (cfm) Face Area (sq ft) Connection Size (in. OD sweat)	800 2	1224 3.06	1612 4.03	2000 5	3252 8.13	3792 9.48	5124 12.81	7000 17.5					
(Qty) Liquid Line Suction Line	3/ ₈ 3/ ₄	3/ ₈ 3/ ₄	1/2 7/8	1/2 11/8	^{5/} 8 1 ^{1/} 8	^{5/} 8 1 ^{3/} 8	^{7/} 8 (2) 1 ^{3/} 8 (2)	^{7/} 8 (2) 1 ^{5/} 8 (2)					
STEAM													
Nominal Capacity at 400 fpm (cfm) Face Area (sq ft)	752 1.88	1144 2.86	1452 3.63	1800 4.5	3088 7.72	3576 8.94	4956 12.39	6768 16.92					
FILTER DATA													
Single Wall Unit, Throwaway Filter Size (in.) (Qty)	16x32	16x32	20x20 (2)	20x20 (2)	16x25 (4)	16x25 (4)	16x20 (3) 16x25 (3)	16x20 (4) 16x25 (4)					
Nominal Face Area (sq ft)	3.56	3.56	5.56	5.56	11.11	11.11	15	20					
Single Wall Unit, Pleated Filter Size (in.) (Qty)	16x32	16x32	20x24 (1) 16x20 (1)	20x24 (1) 16x20 (1)	16x25 (4)	16x25 (4)	16x20 (3) 16x25 (3)	16x20 (4) 16x25 (4)					
Nominal Face Area (sq ft)	<mark>3.</mark> 56	3.56	5.56	5.56	11.11	11.11	15	20					
Double Wall Unit, Pleated and Throwaway Filters Size (in.) (Qty)	16x32 (1) 10x10 (3)	16x32 (1) 10x10 (3)	12x25 (1) 12x20 (1) 16x20 (1) 16x25 (1)	12x25 (1) 12x20 (1) 16x20 (1) 16x25 (1)	25x25 (2) 20x25 (2)	25x25 (2) 20x25 (2)	16x24 (3) 29x48 (1)	16x20 (4) 16x32 (4)					
Nominal Face Area (sq ft)	5.64	5.64	8.75	8.75	15.63	15.63	17.67	23.11					

Table 4 — Physical Data — 39SR Coil and Filter Data

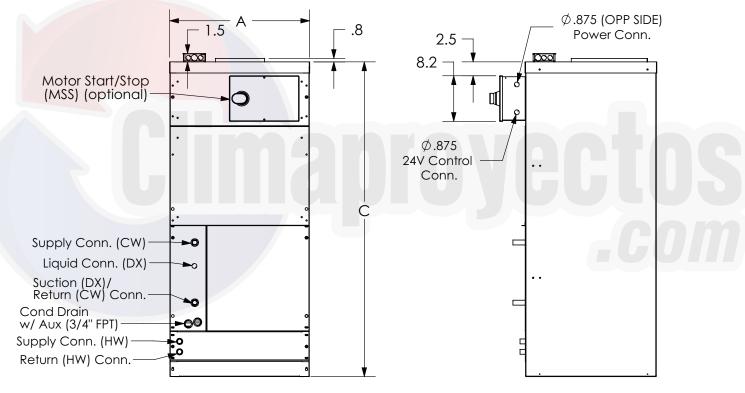
*4 and 6 row hot water coils have the same face area as 4 and 6 row chilled water coils.

39SH UNIT			UNI	Τ Ουτι	INE				L WONN.	ΓING		OPENING LET	RETURN DUCT CONNECTION		
SIZE	Α	в	C1*	C2*	D	ш	н	м	N	Р	F	G	к	L	
00,01	38.0	28.0	14.1	15.1	1.0	9.6	1.0	1.6	2.6	3.3	8.6	10.6	22.0	12.3	
02,03	37.1	36.6	18.1	19.0	1.0	14.1	1.0	1.5	1.5	2.9	8.4	10.6	27.6	16.4	
04	42.0	45.0	22.1	23.0	1.0	17.9	1.0	1.5	1.5	2.7	9.1	13.8	36.0	20.0	
05	42.0	45.0	22.1	23.0	1.0	14.3	1.0	1.5	1.5	2.7	12.5	13.8	36.0	20.0	
07,09	52.5	57.0	34.8	34.8	1.0	21.8	9.1	2.8	2.8	2.8	16.2	16.2	48.0	32.2	
13	57.5	67.2	43.0	43.0	N/A	11.4†	8.0	3.7	3.7	3.7	16.4† (2)	16.4 [†] (2)	57.9	40.5	
17	57.5	72.3	48.0	48.0	N/A	14.0†	13.0	3.7	3.7	3.7	16.4 [†] (2)	16.4 [†] (2)	66.0	45.7	

LEGEND


- Bottom втм

KO — Knockout w/o MSS — Without Motor Start/Stop Station


*"C1" dimension is for standard unit. "C2" dimension is for double wall units. †Sizes 13 and 17 are twin blowers. Dimension "E" is to closest blower. Dimension "F" and "G" are typical for both fan outlets. NOTES:

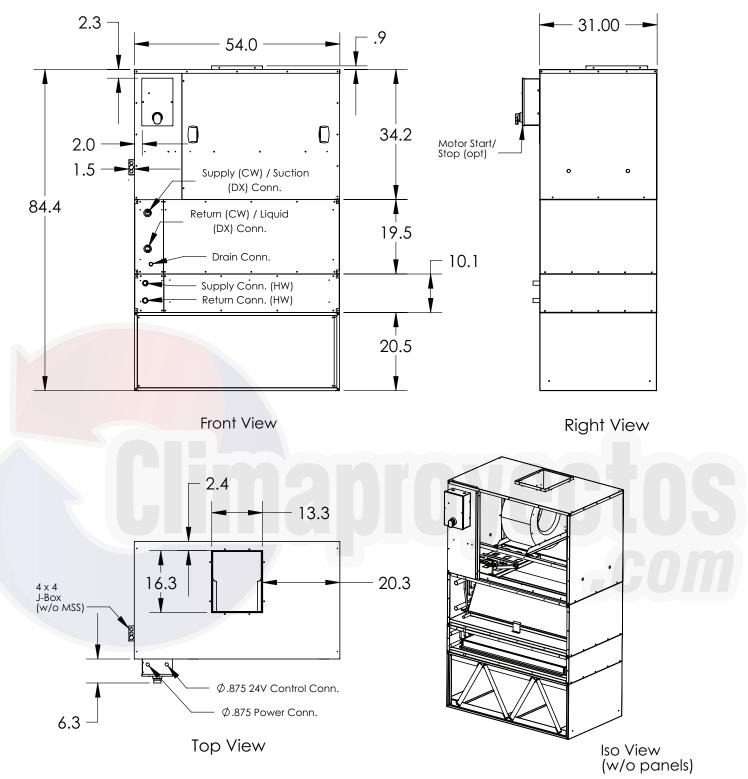
Deasurements shown in inches.
 Unit hand is determined by looking into the filters in same direction as airflow. Right hand unit shown for reference.

Fig. 1 — 39SH Unit

Front View

Right View

DIMENSIONS (in.)


39SV	WIDTH	DEPTH	HEIGHT		SUPPL	Y DUCT		CON	INECTION SIZES	(OD)
UNIT SIZE	Α	В	С	D	Е	F	G	CW Supply-Return	HW Supply-Return	DX Liquid-Suction
02	22.3	24.0	50.0	6.9	8.5	3.0	11.8	3/4 - 3/4	7/ ₈ - 7/ ₈	3/8 - 3/4
03	22.3	24.0	50.0	6.9	8.5	3.0	11.8	3/4 - 3/4	7/ ₈ - 7/ ₈	3/8 - 3/4
04	25.1	24.3	56.5	8.0	9.1	1.6	13.9	7/ ₈ - 7/ ₈	7/ ₈ - 7/ ₈	1/ ₂ - 7/ ₈
05	29.5	26.0	59.5	8.4	12.6	1.3	13.9	1 ¹ / ₈ - 1 ¹ / ₈	1 ¹ / ₈ - 1 ¹ / ₈	¹ / ₂ - 1 ¹ / ₈

LEGEND

MSS — Motor Start/Stop Station w/o — Without CW — Chilled Water DX — Direct Expansion HW — Hot Water

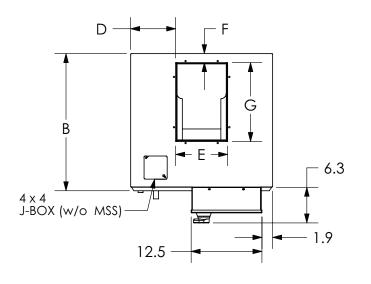
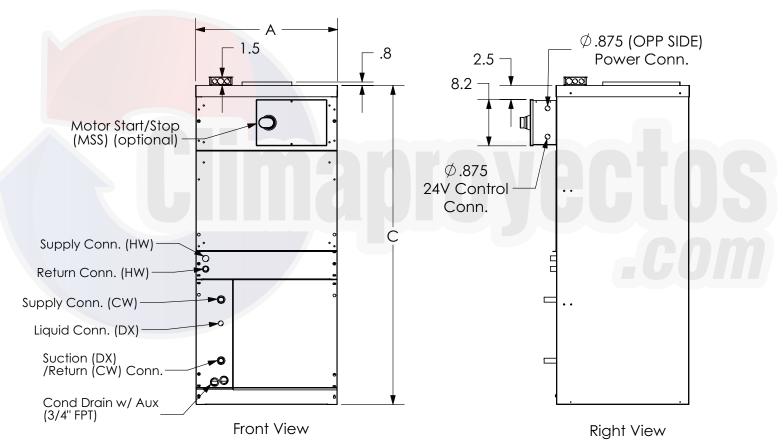

NOTE: Measurements shown in inches.

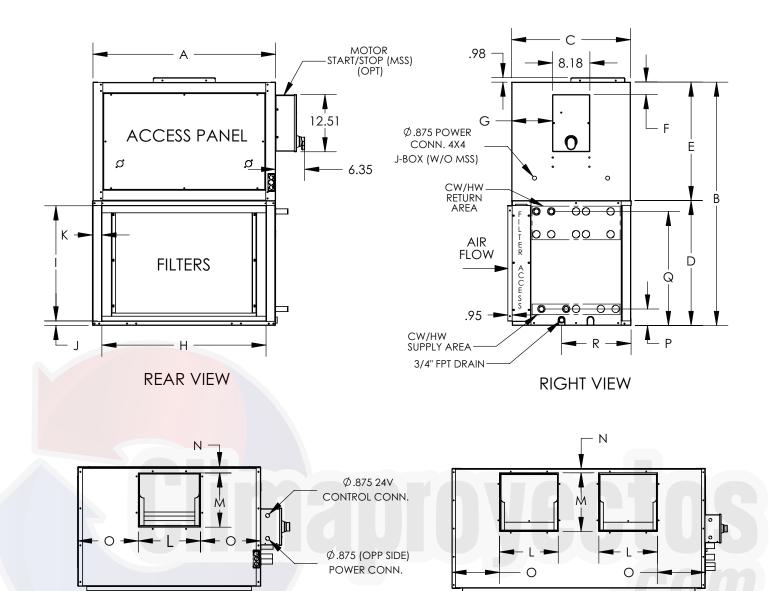
Fig. 2 — 39SV Unit Sizes 02-05 — Pre-Heat



		. ,		
		CONNECTIO	N SIZES (OD)	
39SV UNIT SIZE	CW Supply-Return	HW Supply-Return	DX Liquid-Suction	Drain
07	1 ¹ / ₈ - 1 ¹ / ₈	1 ¹ / ₈ - 1 ¹ / ₈	⁵ / ₈ - 1 ¹ / ₈	0.875
09	1 ³ / ₈ - 1 ³ / ₈	1 ¹ / ₈ - 1 ¹ / ₈	1/2 - 7/8 (2)	0.875
CW — Chilled Water DX — Direct Expansion HW — Hot Water		r Start/Stop Statior ut	1	
NOTE: Measurements s	shown in inches.			

Fig. 3 — 39SV Unit Sizes 07-09 — Pre-Heat

39SV	WIDTH	DEPTH	HEIGHT		SUPPL	Y DUCT		CONNECTION SIZES (OD)				
	Α	В	С	D	Е			CW Supply-Return	HW Supply-Return	DX Liquid-Suction		
02	22.3	24.0	50.0	6.9	8.5	3.0	11.8	3/4 - 3/4	7/ ₈ - 7/ ₈	³ / ₈ - ³ / ₄		
03	22.3	24.0	50.0	6.9	8.5	3.0	11.8	3/4 - 3/4	7/ ₈ - 7/ ₈	3/ ₈ - 3/ ₄		
04	25.1	24.3	56.5	8.0	9.1	1.6	13.9	7/ ₈ - 7/ ₈	7/ ₈ - 7/ ₈	1/ ₂ - 7/ ₈		
05	29.5	26.0	59.5	8.4	12.6	1.3	13.9	1 ¹ / ₈ - 1 ¹ / ₈	1 ¹ / ₈ - 1 ¹ / ₈	¹ / ₂ - 1 ¹ / ₈		


LEGEND

CW — Chilled Water **DX** — Direct Expansion

HW — Hot Water w/o MSS— Without Motor Start/Stop Station

NOTE: Measurements shown in inches.

Fig. 4 — 39SV Unit — Re-Heat

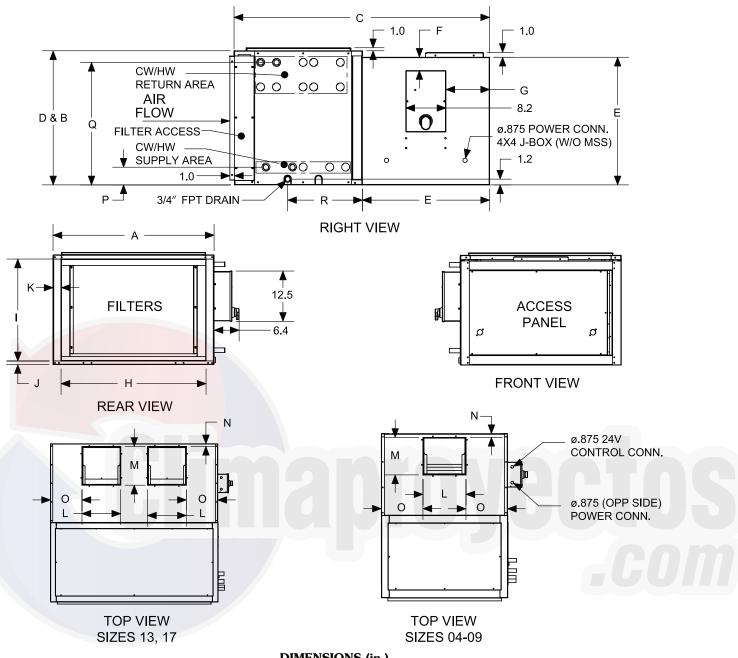
TOP VIEW SIZES 04-09

TOP VIEW SIZES 13, 17

39SM UNIT	WIDTH	HEIGHT	DEPTH	COIL SECTION	BLOWER SECTION		TOR /STOP PT.)	R	ETURI	N DUC	т	(BI	SUPPL LOWER		IG)	SUPPLY CONN.	RETURN CONN.	DRAIN
SIZE	Α	в	С	D	E	F	G	Н	I	J	к	L	М	Ν	0	Р	Q	R
04	40.0	53.5	26.0	27.5	26.0	2.8	9.0	36.0	25.5	1.0	2.0	13.6	11.9	1.1	13.1	3.6	20.0	15.2
05	40.0	53.5	26.0	27.5	26.0	2.8	9.0	36.0	25.5	1.0	2.0	13.6	11.9	1.1	13.1	3.6	25.0	15.2
07	50.0	68.5	34.0	34.5	34.0	6.8	13.0	48.0	32.0	1.0	1.0	13.4	16.2	1.1	15.4	3.6	25.0	22.5
09	50.0	68.5	34.0	34.5	34.0	6.8	13.0	48.0	32.0	1.0	1.0	13.4	16.2	1.1	15.4	3.6	30.0	22.5
13	72.0	81.5	34.0	47.5	34.0	6.7	13.0	66.0	45.0	2.0	6.0	16.4	16.4	1.1	14.0	3.6	30.0	23.0
17	72.0	81.5	34.0	47.5	34.0	6.7	13.0	66.0	45.0	2.0	6.0	16.4	16.4	1.1	14.0	3.6	42.6	23.0

DIMENSIONS (in.)

LEGEND


CW - Chilled Water

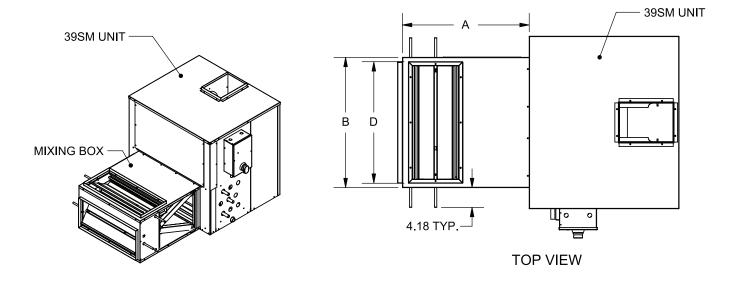
HW — Hot Water w/o MSS — Without Motor Start/Stop Station

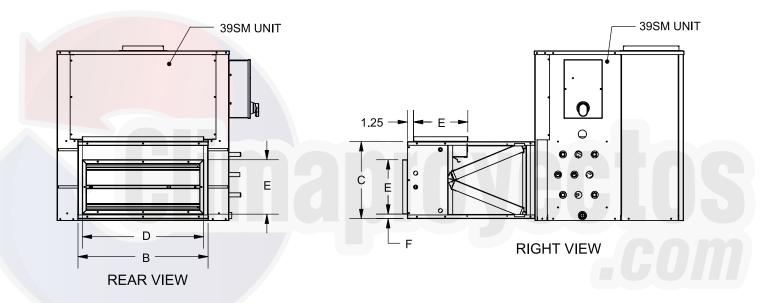
NOTES:

Measurements shown in inches.
 Hand connections are defined by looking at the filters in the direction of airflow.
 Coil section and blower ship separately and are installed by others.
 Blower section may be rotated 180 degrees to relocate supply duct.

Fig. 5 — 39SM Unit Sizes 04-17 (Vertical Configuration)

39SM UNIT	WIDTH	HEIGHT	DEPTH	COIL SECTION	BLOWER SECTION	START	TOR I/STOP PT.)	R	ETURI	N DUC	т		SUPPL OWER		NG)	SUPPLY CONN.	RETURN CONN.	DRAIN
SIZE	Α	в	С	D	E	F	G	Н	I	J	к	L	М	Ν	0	Р	q	R
04	40.0	27.5	52.0	27.5	26.0	2.7	8.9	36.0	25.5	1.0	2.0	13.6	11.9	1.1	13.1	3.6	20.0	15.2
05	40.0	27.5	52.0	27.5	26.0	2.7	8.9	36.0	25.5	1.0	2.0	13.6	11.9	1.1	13.1	3.6	25.0	15.2
07	50.0	34.5	68.0	34.5	34.0	6.8	12.9	48.0	32.0	1.0	1.0	13.4	16.2	1.1	15.4	3.6	25.0	22.5
09	50.0	34.5	68.0	34.5	34.0	6.8	12.9	48.0	32.0	1.0	1.0	13.4	16.2	1.1	15.4	3.6	30.0	22.5
13	72.0	47.5	68.0	47.5	34.0	6.7	12.9	66.0	45.0	1.0	2.9	16.4	16.4	1.1	14.0	3.6	30.0	23.0
17	72.0	47.5	68.0	47.5	34.0	6.7	12.9	66.0	45.0	1.0	2.9	16.4	16.4	1.1	14.0	3.6	42.6	23.0

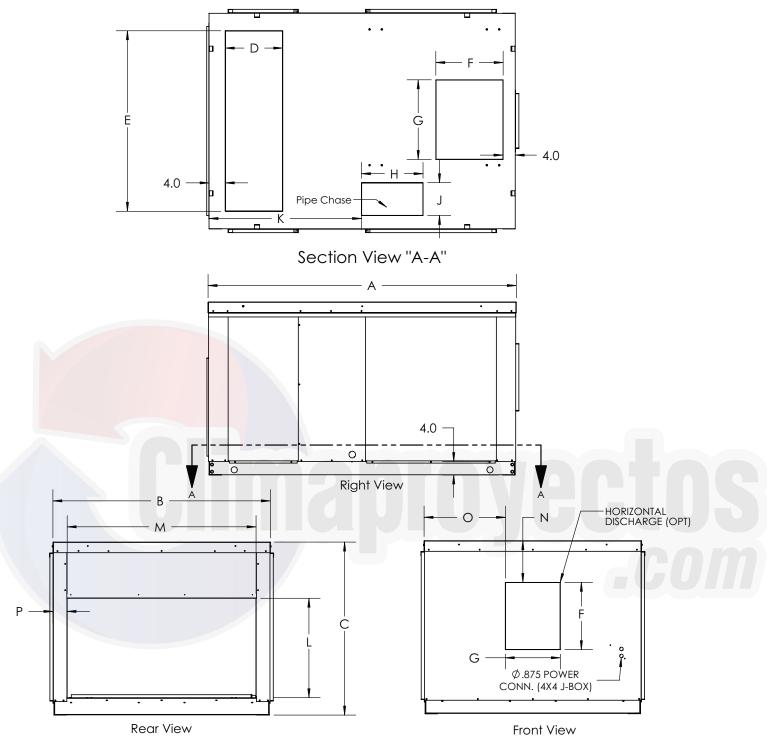

LEGEND


CW — Chilled Water HW — Hot Water w/o MSS — Without Motor Start/Stop Station

NOTES:

Measurements shown in inches.
 Hand connections are defined by looking at the filters in the direction of airflow.
 Coil section and blower ship separately and are installed by others.
 Blower section may be rotated 180 degrees to relocate supply duct.

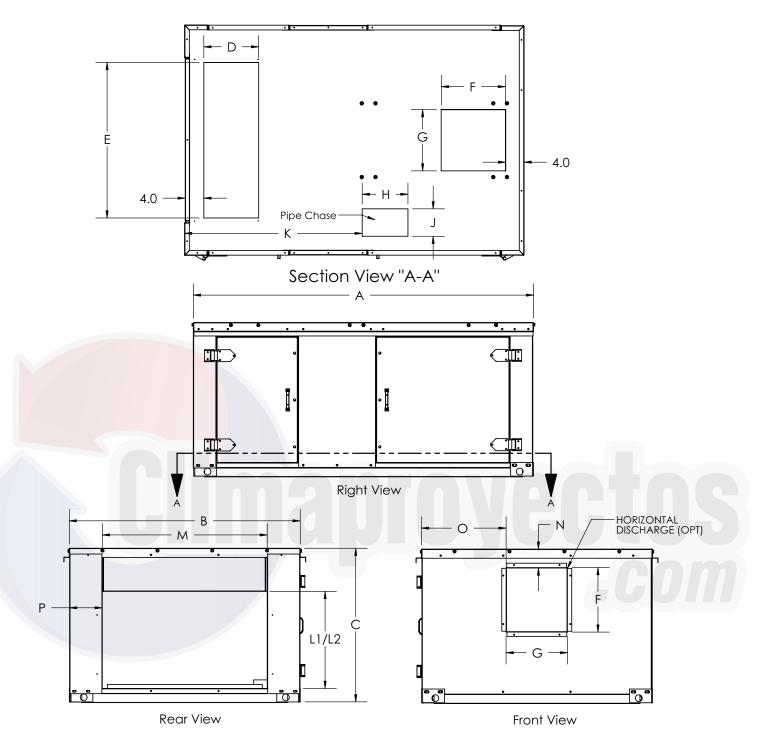
Fig. 6 — 39SM Unit Sizes 04-17 (Horizontal Configuration)



39SM UNIT	LENGTH	WIDTH	HEIGHT	DUCT WIDTH	DUCT HEIGHT	TOP CLEARANCE	FILTE	RS
SIZE A		В	С	D	Е	F	SIZE	QTY
04,05	27.0	36.2	25.5	34.3	15.0	2.0	16 x 32 x 2	2
07,09	32.0	48.2	32.4	46.3	15.0	9.7	20 x 24 x 2	4
13,17	40.0	66.2	45.0	64.3	16.0	15.5	30 x 20 x 2	6

NOTES:
Measurements shown in inches.
39SM unit shown for reference only.
Not all components shown for clarity.
Optional actuator not shown.
Top and rear inlets shown. Bottom and rear inlets are also available.

Fig. 7 — 39SM Unit — Mixing Box



DIMENSIONS (in.)

39SR UNIT SIZE	Α	В	С	D	Е	F	G	н	J	к	L	М	Ν	0	Р
02, 03	67.4	39.6	22.5	12.0	25.8	11.9	8.9	11.0	8.0	35.4	14.2	28.4	2.5	15.3	5.6
04, 05	72.1	48.1	28.5	12.0	34.0	14.1	13.1	11.0	8.0	35.6	18.2	35.8	5.1	17.5	6.2
07, 09	75.0	53.0	42.2	14.0	44.0	16.4	13.1	15.0	8.0	37.2	24.3	46.0	10.1	20.0	3.5
13	75.1	53.0	55.7	14.0	44.0	16.4	19.4	15.0	8.0	37.3	32.7	46.0	23.5	16.8	3.5
17	96.0	76.3	53.3	15.0	62.0	19.6	22.0	15.0	8.0	50.3	47.0	68.2	17.4	27.1	4.1

NOTE: Measurements shown in inches.

Fig. 8 — 39SR Unit — Single Wall



39SR UNIT SIZE	A	в	С	D	ш	F	G	н	J	к	L1	L2	М	Ν	0	Р
02, 03	70.0	42.0	30.5	12.0	26.0	11.9	8.9	10.0	6.0	33.7	17.2	14.2	28.1	8.5	16.6	7.0
04, 05	74.0	50.5	33.6	12.0	34.0	14.1	13.4	10.0	6.0	38.9	21.2	18.2	36.1	4.2	18.6	7.2
07, 09	77.4	55.5	50.9	14.0	44.0	16.4	13.1	15.0	8.0	38.0	35.1	24.3	45.9	19.9	21.2	4.8
13	77.4	55.5	60.6	14.0	44.0	16.4	18.9	15.0	8.0	38.0	48.9	32.8	45.9	29.7	18.3	4.8
17	96.5	76.5	64.1	14.0	62.0	19.0	22.0	15.0	8.0	51.9	48.2	46.9	65.8	24.0	27.3	5.4

NOTES:

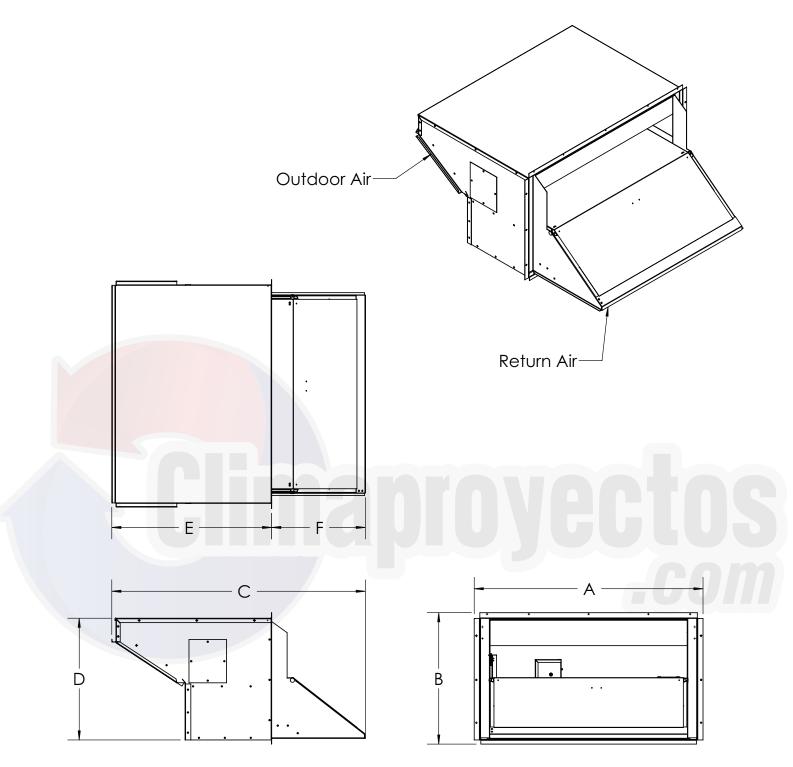

Measurements shown in inches.
 L1 dimension is for horizontal or bottom return economizer package option.
 L2 dimension is for motorized outside air damper package option.

Fig. 9 — 39SR Unit — Double Wall

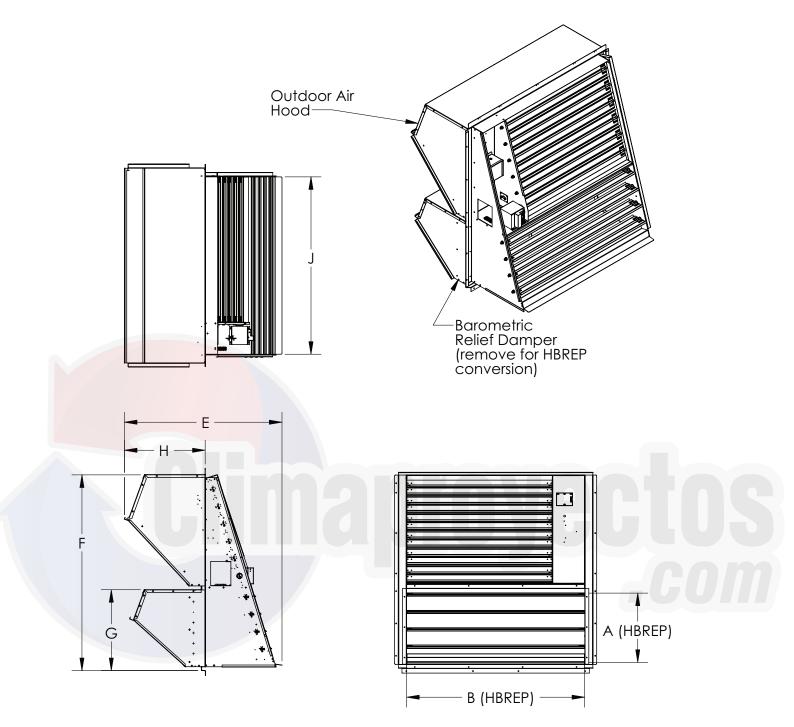
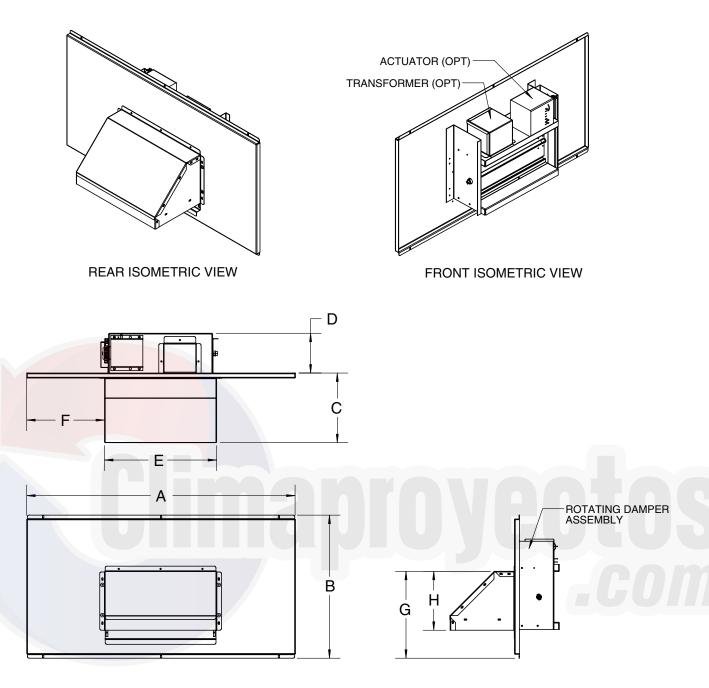

39SR UNIT SIZE	Α	В	С	D	E	F	G
02, 03	30.6	19.9	26.1	2.0	7.7	26.2	19.9
04, 05	39.9	18.0	25.0	1.8	9.9	40.0	22.1

Fig. 10 — 39SR Unit Sizes 02-05 — Horizontal Return Economizer Package

39SR UNIT SIZE	Α	В	С	D	E	F
02, 03	32.100	18.940	42.075	17.260	25.950	16.150
04, 05	39.725	22.825	44.025	21.125	27.750	16.250

Fig. 11 — 39SR Unit Sizes 02-05 — Bottom Return Economizer Package



LEGEND HBREP — Horizontal Bottom Return Economizer Package

DIMENSIONS (in.)

39SR UNIT SIZE	Α	В	E	F	G	Н	J
07, 09	13.8	44.1	35.2	34.9	15.4	16.5	48.3
13	18.8	44.1	39.0	48.6	20.1	20.0	48.3
17	19.0	62.9	43.4	45.1	20.1	20.0	66.1

Fig. 12 — 39SR Unit Sizes 07-17 — Bottom and Horizontal Return Economizer Package

MOAD DIMENSIONS (in.)

39SR UNIT SIZE	Α	В	С	D	Е	F	G	Н
02, 03	29.9	19.1	8.7	5.6	24.1	2.9	13.4	10.4
04, 05	37.8	23.5	14.6	5.6	25.3	6.3	17.3	13.8
07, 09	48.8	28.4	17.4	5.6	44.4	2.2	21.8	19.6
13	48.8	34.9	22.3	5.6	40.5	4.1	28.3	25.8
17	30.3	46.8	25.0	5.6	25.2	2.5	38.9	31.8

LEGEND

MOAD — Motorized Outside Air Damper

Fig. 13 — 39SR Unit — Motorized Outside Air Damper

PREINSTALLATION

- 1. Check items received against packing list.
- 2. Do not stack unit components or accessories during storage. Stacking can cause damage or deformation.
- 3. If unit is to be stored for more than 2 weeks prior to installation, observe the following precautions:
 - a. Choose a dry storage site that is reasonably level and sturdy to prevent undue stress or permanent damage to the unit structure or components. Do not store unit on vibrating surface. Damage to stationary bearings can occur. Set unit off ground if in heavy rain area.
 - b. Remove all fasteners and other small parts from jobsite to minimize theft. Tag and store parts in a safe place until needed.
 - c. Cover entire unit with a tarp or plastic coverall. Extend cover under unit if stored on ground. Secure cover with adequate tiedowns or store indoors. Be sure all coil connections have protective shipping caps.
 - d. Monthly Remove tarp from unit, enter fan section through access door or through fan inlet, and rotate fan and motor slowly by hand to redistribute the bearing grease and to prevent bearing corrosion.

Rigging — Do not remove shipping skids or protective covering until unit is ready for final placement. Use slings and spreader bars as applicable to lift unit. *Do not lift unit by coil connections or headers*.

Do not remove protective caps from coil piping connections until ready to connect piping.

Do not remove protective cover or grease from fan shaft until ready to install sheave.

Lay rigid temporary protection such as plywood walkways in unit to prevent damage to insulation or bottom panel during installation.

Shipping Bolt and Screw Removal (36SH Unit) — On 39SH units ensure that all red shipping bolts and screws are removed and all other bolts and screws are tight. The red hold-down shipping bolts are located on both sides of the blower/motor mounting rails and are accessible through the side access panels. The red sheet metal screws are located on the discharge duct collar. All red bolts and screws must be removed for the blower assembly to be isolated from the cabinet. See Fig. 14.

Unit Suspension (39SH and 39SM Units) — Acceptable forms of unit suspension are shown in Fig. 15. A field-supplied platform mount is recommended, especially for larger unit sizes. Units can also be supported by suspending the unit from crossbeams at the joint between each unit component. Since the 39SM units lack a baserail, support members should also be placed along the airway length of the unit in order to prevent buckling. Ensure that suspension rods are secured to adequately support the unit and that the rods extend entirely through their associated fasteners.

All 39SH units have $7/_8$ in. knockouts in each corner of their top and base panels for suspension rods to pass through, located $31/_2$ in. in from the corners on the center line. It is recommended that an angle iron or Unistrut framing system be used

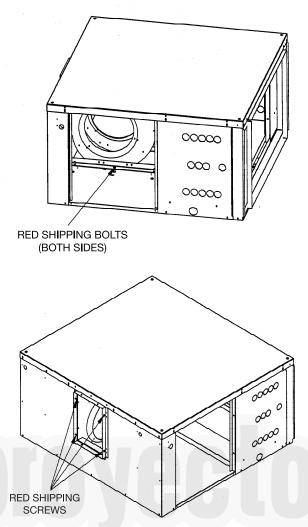
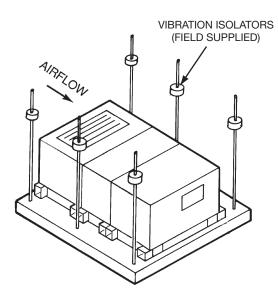
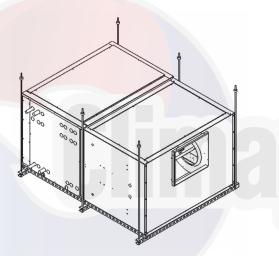


Fig. 14 — Shipping Bolt and Screw Removal

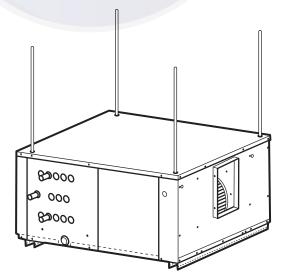
under the unit for support (these support pieces should extend approximately 1 in. beyond each end of the unit width).


NOTE: Locate suspension rods so they do not block access panels or interfere with the electrical, mechanical, or drain functions of unit.

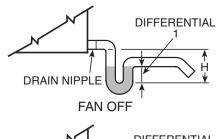
Service Clearance — Provide adequate space for unit service access (fan shaft and coil removal, filter removal, motor access, damper linkage access, etc.)

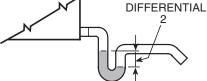

Condensate Drain — To prevent excessive build-up of condensate in drain pan, adequate trap clearance (trap depth) must be provided beneath the unit as indicated in Fig. 16. See Installation, Condensate Drain section for additional details.

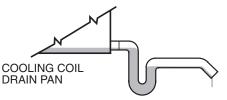
External Vibration Isolators — Install vibration isolators per certified drawings, and in accordance with the job specifications and the instructions of the vibration isolator manufacturer. The coil piping must be isolated or have a flexible connection to avoid coil header damage because of unit motion. A flexible connection should be installed at the fan discharge.


Figure 15 shows isolation locations for overhead suspension of unit.

CEILING – RECOMMENDED PLATFORM MOUNT




CEILING – ALTERNATE CROSSBEAM MOUNT


CEILING – ALTERNATE SUSPENSION RODS WITH NO MOUNT

TRAP CONDITION WHEN FAN STARTS

FAN RUNNING AND CONDENSATE DRAINING Fig. 16 — Condensate Drain

INSTALLATION

Condensate Drain — Install a trapped condensate drain line at unit drain connection. All 39S units have a 3/4 in. FPT condensate drain connection.

Measure maximum design negative static pressure upstream from the fan. Referring to Fig. 16, height "H" must be equal to or larger than negative static pressure at design operating conditions. Prime enough water in trap to prevent losing seal (Differential 1). When the fan starts, Differential 2 is equal to the maximum negative static pressure.

Provide freeze-up protection as required.

Bottom Return Economizer Package (BREP) and Horizontal Bottom Return Economizer Package (HBREP) (39SR Unit) — Economizers are used with 39SR units for automatic sensor-controlled introduction of outdoor air into the autom through an electro mechanic

tion of outdoor air into the system through an electro-mechanically controlled damper.

To install BREP:

- 1. Check for correct number of parts shown in Fig. 17 and the following list.
 - 1 Economizer assembly
 - 1 Barometric relief hood
 - 1 Outdoor air hood
 - 1 Hardware bag
- 2. Disconnect all power to unit.
- 3. Remove return air access panel from unit and rear access panel(s) if applicable as shown in Fig. 18.
- 4. To assemble the barometric relief hood, the following will be needed. See Fig. 19.
 - 30 -Screws (type A no. 10 16 x $\frac{1}{2}$ in.)
 - 1 15 ft gasket ($1/_8$ in. x $1/_2$ in.)
 - 1 15 ft gasket ($\frac{1}{8}$ in. x $\frac{3}{4}$ in.)
 - a. Take hood bottom and left hood panel, putting the flange of hood bottom to the inside of left hood panel and screw into place.

- b. Take right hood panel and screw in place like Step a.
- c. Take top rail and place flanges over left hood panel and right hood panel and secure.
- d. Take top panel and do the same as Step c.
- e. Take 1/8 in. x 3/4 in. gasket and place around perimeter of front panel to seal between damper section and hood.
- f. Take front panel and slide inside of left hood panel and right hood panel and secure.

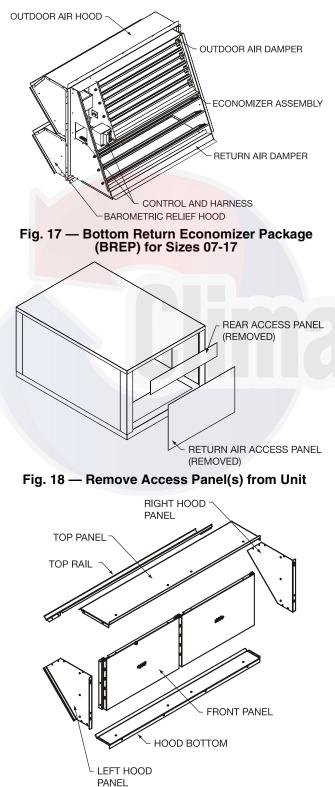


Fig. 19 — Assemble Barometric Relief Hood

- g. Place 1/8 in x 1/2 in gasket on flanges on hood bottom, left hood panel, right hood panel, and top panel that attach to the face of the economizer when installed.
- h. Set barometric relief hood to the side for use later.
- 5. To assemble the outside air hood, the following will be needed. See Fig. 20.

20 -Screws (type A no. 10 - 16 x $\frac{1}{2}$ in.)

- 1 15 ft gasket ($\frac{1}{8}$ in. x $\frac{1}{2}$ in.)
- a. Take hood bottom and left hood panel, putting the flange of hood bottom to the inside of left hood panel and screw into place.
- b. Take right hood panel and screw in place like Step a.
- c. Take top rail and place flanges over left hood panel and right hood panel and secure.
- d. Take side rail and line up to holes in left hood panel and secure.
- e. Repeat Step d for side rail and right hood panel.
- f. Take front panel and slide inside of side rails.
- g. Take top panel and do the same as Step c.
- h. Place $\frac{1}{8}$ in. x $\frac{1}{2}$ in. gasket on flanges on hood bottom, left hood panel, right hood panel, and top rail that attach to the face of the economizer when installed.
- i. Set outside air hood to the side for use later.
- 6. As shown in Fig. 21, slide economizer assembly into unit over return opening, but DO NOT insert completely into unit. Connect low and high voltage wiring to the terminal block and transformer per wiring diagram shown in Fig. 22.

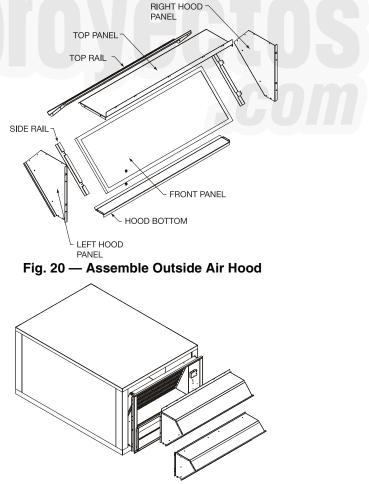


Fig. 21 — Slide Economizer Assembly into Unit

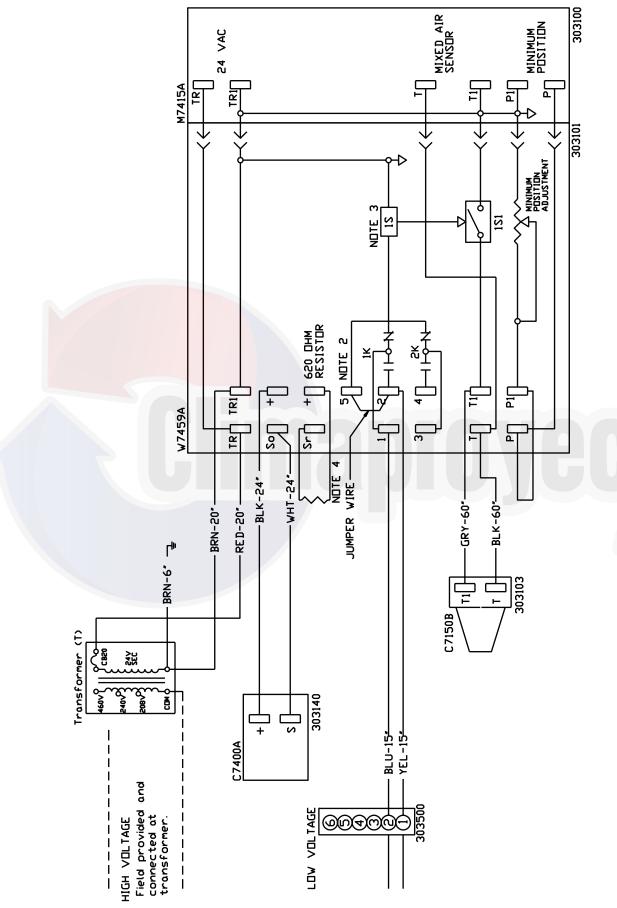


Fig. 22 — Modulating Gear Economizer with Relief for Sizes 07-17 BREP Units

NOTES:
1. Unit wiring shown as reference only. Check unit wiring for actual unit wiring.
2. Relays 1K and 2K actuate when the outdoor air enthalpy is higher than the return air enthalpy.
3. 1S is an electronic switch which closes when powered by a 24 VAC input.
4. Factory-installed resistor should be removed only if C7400 differential enthalpy sensor is added.

7. To install barometric hood:

For bottom return applications:

Take the barometric hood and secure to economizer using screws as shown in Fig. 23.

For horizontal return applications:

- a. Connect field-installed horizontal return ductwork to duct flange. Ensure that bottom return on unit is capped.
- b. Install barometric hood over exhaust opening in field-installed ductwork. For exhaust and horizontal return opening sizes see duct flange dimensions in Fig. 24.
- 8. Install the outside air hood. The upper flange of the hood should rest against the top of the economizer. See Fig. 25.
- 9. Apply $\frac{1}{8} \times \frac{1}{2}$ in. gasketing along mounting flanges. Slide economizer assembly fully into unit and secure with the supplied no. 10-16 x $\frac{1}{2}$ screws. See Fig. 26.
- 10. Replace all panels and restore power to the unit.

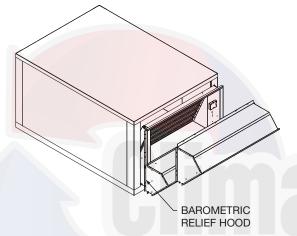
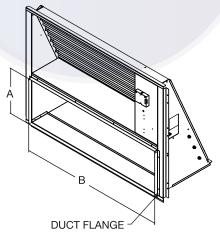
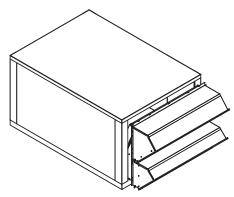
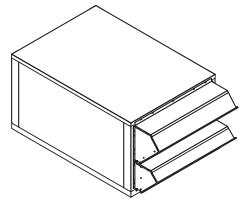
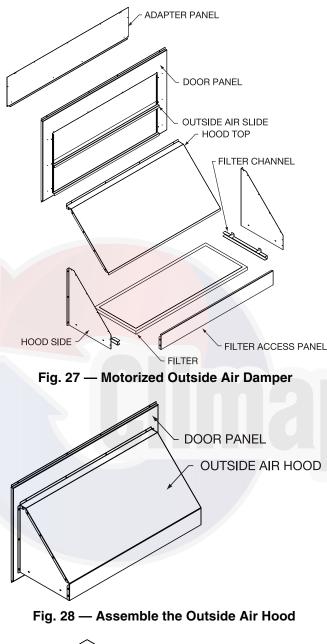
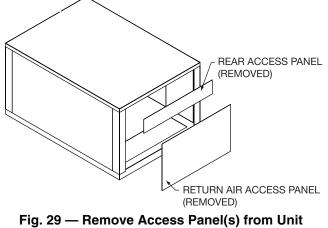




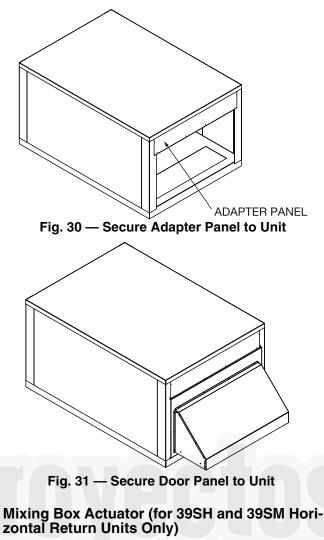
Fig. 23 — Install Barometric Relief Hood

39SR UNIT SIZE	DUCT FLANGE DIMENSION (in.)						
SIZE	Α	В					
07,09	13.75	44.25					
13	18.75	44.25					
17	19.00	63.00					

Fig. 24 — 39SR Unit Duct Flange Dimensions for Horizontal Return Applications


Fig. 26 — Slide Economizer into Unit


Motorized Outside Air Damper — To install the motorized outside air damper:

- 1. Check for correct number of parts shown in Fig. 27 and the following list.
 - 1 Hood top
 - 2 Hood sides
 - 2 Filter channels
 - 1 Filter
 - 1 Filter access panel
 - 1 Door panel with outside air slide
 - 1 Adapter panel (provided if necessary)
 - 1 Hardware bag
- 2. To assemble outdoor air hood (shown in Fig. 28):
 - a. Secure the filter channels to the hood sides using the supplied no. 10-16 x $1/_2$ screws.
 - b. Place the hood sides to the inside of the side flange of the hood top and secure with the supplied no. 10-16 x 1/2 screws.
 - c. Slide the filter inside the filter channels.
 - d. Place the filter access panel over the hood side panels and secure with no. 10-16 x 1/2 screws.
- 3. Adjust the position of the outside air slides on the door panel to determine the amount of fresh air provided to the unit. See Fig. 27.
- 4. After the slides are in the desired position, secure the outdoor air hood to the door panel using the provided no. 10-16 x $\frac{1}{2}$ screws as shown in Fig. 28.
- 5. Remove the return air access panel from unit and the rear access panel(s) if applicable as shown in Fig. 29.
- 6. Locate the adapter panel (provided if necessary). Position the adapter panel at the top of the return air access panel under the rooftop unit top panel. Secure the adapter panel to the rooftop unit using the supplied no. 10-16 x $1/_2$ screws as shown in Fig. 30.

- 7. Center the door panel over the return-air access opening.
- 8. Align the holes in the top and bottom of the door panel to the holes in the rooftop unit. Secure the door panel to the unit using the provided no. $10-16 \times 1/2$ screws as shown in Fig. 31.

MIXING BOX ACTUATOR ASSEMBLY (Fig. 32 and 33) — To assemble the mixing box actuator:

- 1. Press logic module onto actuator.
- 2. Remove lock nut from swivel nut assembly. Place swivel nut assembly into slot on actuator arm. Hand tighten lock nut onto swivel nut assembly. Swivel nut assembly will need to be adjusted once installed for proper actuator motion.
- 3. Attach actuator arm assembly to actuator with four 1/4-in. screws. Arm may need to be repositioned once installed to ensure proper actuator motion.

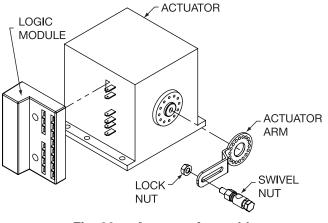
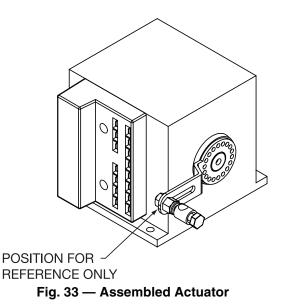



Fig. 32 — Actuator Assembly

ACTUATOR INSTALLATION — To install the actuator:

- 1. Align actuator so that the actuator linkage arm will have enough clearance for full range of motion. Refer to Fig. 34-37. Align center line of the actuator as close to the centerline of DR4 as possible. See Fig. 36 and 37. Use at least 4 self-drilling screws to mount directly to top of unit.
- 2. Place linkage arm assembly (linkage arm and swivel nut arm) onto DR4 as shown in Fig. 36 and 37. Do not tighten to DR4 as adjustments need to be made.
- 3. Place linkage rod between actuator arm and linkage arm on DR4. See Fig. 36. Linkage rod may need to be cut to length. Ensure actuator arm and linkage arm are parallel.
- 4. Ensure linkage assemblies are properly secured as shown in the linkage assembly instructions sent with the unit.
- 5. Open one set of dampers to 100% open and the other to 100% closed. Ensure actuator motion will operate as needed and tighten all linkages, swivel assemblies, and linkage rods into place.
- 6. Ensure actuator motion opens and closes damper assemblies fully. If not, adjust settings of linkage arm, actuator arm, swivel nut assemblies, and linkage rods one at a time until full operation is achieved.

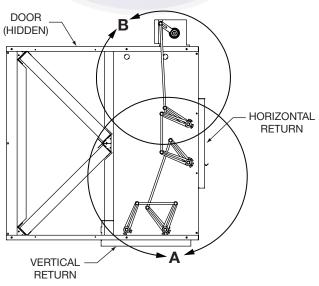


Fig. 34 — Actuator Installation Front View

Fig. 35 — Actuator Installation Side View

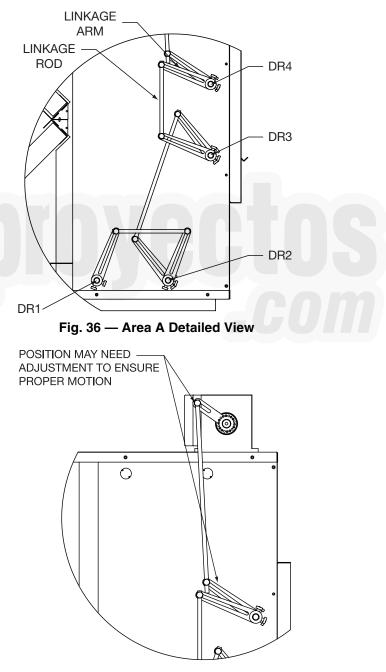


Fig. 37 — Area B Detailed View

Mixing Box Air Sensor

MIXING BOX MIXED AIR SENSOR BRACKET ASSEMBLY — To assemble the mixed air sensor bracket assembly to the mixing box, attach mixed air sensor to mixed air sensor bracket. See Fig. 38.

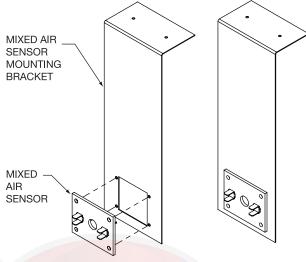


Fig. 38 — Mixed Air Sensor Bracket

MIXED AND OUTSIDE AIR SENSORS INSTALLATION

- 1. Remove access panel and filters as needed.
- 2. Place mixed air sensor assembly in airstream as shown in Fig. 39.
- 3. Attach to top of unit with self drilling screws.
- 4. Drill or knockout $\frac{1}{2}$ in. hole into top of mixing box close to actuator as shown in Fig. 39.
- Insert snap bushing in hole. Run wires inside unit, along top of mixing box, between the filter rail and insulation, and attach to mixed air sensor.
- 6. Place enthalpy sensor, shown in Fig. 40, in location suitable to meet manufacturer's requirements.
- 7. Connect all sensors to logic module per manufacturer's instructions.
- 8. Test to ensure proper function.
- 9. Replace all parts and tape or fill any holes or gaps made.

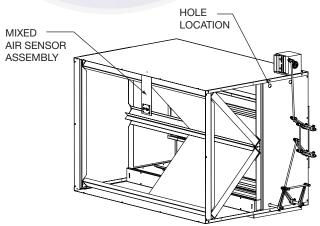


Fig. 39 — Mixed Air Sensor Installation

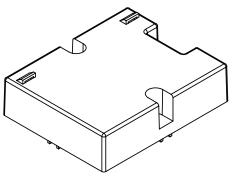


Fig. 40 — Enthalpy Sensor

Mixing Box — To install mixing box:

- 1. Insert rear return duct flanges of unit into opening of mixing box.
- 2. Ensure all unit flanges are inside the opening of the mixing box and screw a minimum of three screws into each of the unit's four flanges using self-drilling screws.
- 3. The mixing box should now hang freely from the unit.

NOTE: Hanging brackets (shipped loose), as shown in Fig. 41, are recommended for 39SH and 39SM unit sizes 07 and above. To install brackets, place in approximate location and use self-drilling screws to attach to mixing box. Brackets are sized to allow hanging from Unistrut. Unistrut should be cut to the length one to two inches shorter than the width of the mixing box to avoid any interference with the damper linkages.

4. Remove unit filters from unit before start-up.

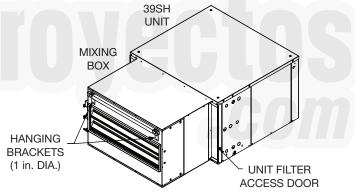
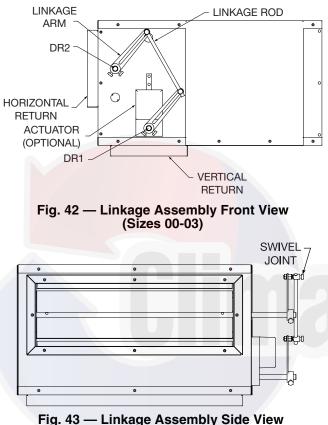


Fig. 41 — Installing Mixing Box

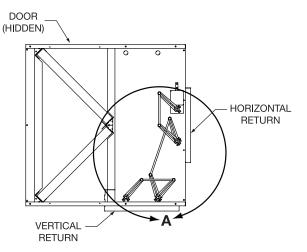

MIXING BOX LINKAGE INSTALLATION (39SH Unit Sizes 00-03) — To install the mixing box linkage assembly (sizes 00-03):

- 1. Check for correct number of parts:
 - 1 Linkage rod
 - 2 Linkage arms
 - 2 Swivel joints

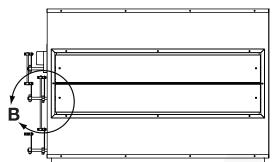
NOTE: A $^{7}/_{16}$ in. box end wrench and/or socket will be needed for linkage installation.

- 2. Attach actuator (optional item) to unit with actuator mounting hardware included with actuator. Actuator should be mounted on damper rod 1 (DR1) as shown in Fig. 42.
- 3. Orientate actuator to avoid interference with linkage assembly.
- 4. Ensure dampers are fully closed or open depending on application, and secure actuator to shaft. Actuator should open and close dampers fully. Adjust actuator as needed.

- 5. Place a linkage arm onto DR1 and DR2. See Fig. 42 and 43 for proper positioning. Ensure that swivel joints are fully extended to the end of the linkage arm and tighten.
- 6. Insert linkage rod into swivel joints and tighten. Linkage rod may need to be cut down to size. Linkage arms should be parallel.
- 7. Ensure one set of dampers are fully open and the other fully closed. Adjust linkage assembly to allow travel without interference and tighten to DR1 and DR2.
- 8. The actuator should now be able to power the dampers fully open and fully closed without interference. Adjust linkage assemblies as needed.


(Sizes 00-03)

MIXING BOX LINKAGE INSTALLATION (Sizes 04-17) — To install the mixing box linkage assembly (sizes 04-17):


- 1. Check for correct number of parts:
 - 3 Linkage rods
 - 6 Linkage arms
 - 6 Swivel joints

NOTE: A 7/16 in. box end wrench and/or socket will be needed for linkage installation.

- 2. An alternate field-supplied actuator may be installed directly on the damper shaft if required. If a factory-supplied actuator is ordered for the mixing box, refer to Mixing Box Actuator section on page 23.
- 3. Orientate actuator to avoid interference with linkage assembly. Refer to Fig. 44 and 45.
- Ensure dampers are fully closed or open depending on application, and secure actuator to shaft. Actuator should open and close dampers fully. Adjust actuator as needed.
- 5. Place a linkage arm onto DR3 and DR2. See Fig. 46 and 47. for proper positioning. Ensure that swivel joints are fully extended to the end of the linkage arm and tighten.

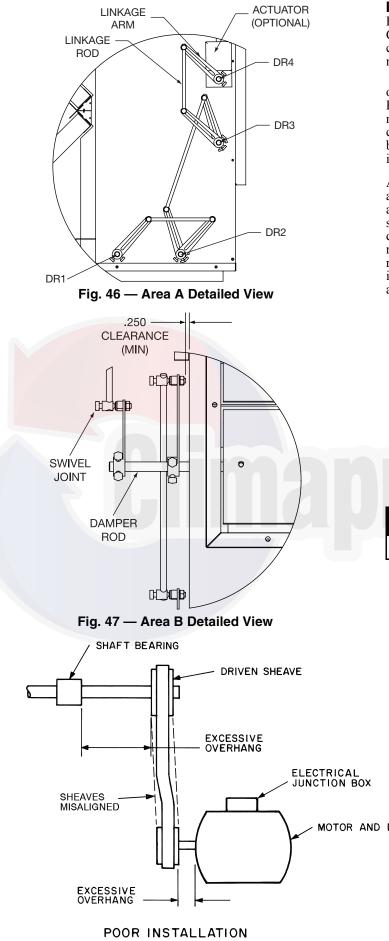


Fig. 44 — Linkage Assembly Front View (Sizes 04-17)

Fig. 45 — Linkage Assembly Side View (Sizes 04-17)

- 6. Insert linkage rod into swivel joints and tighten. Linkage rod may need to be cut down to size. Linkage arms should be parallel. Assembly should still be loose on damper rods. This will be linkage assembly no. 1.
- 7. Place linkage arm onto DR1 and DR2. Ensure swivel joints are fully extended to the end of the linkage arm and tighten.
- 8. Insert linkage rod into swivel joints and tighten. Linkage rod may need to be cut down to size. Linkage arms should be parallel.
- 9. Ensure dampers are fully open or closed and tighten linkage arms to damper rods. Linkage assembly should be able to open and close dampers fully without interference. Adjust accordingly.
- 10. Place linkage arm onto DR3 and DR4. Ensure swivel joints are fully extended to the end of the linkage arm and tighten.
- 11. Insert linkage rod into swivel joints and tighten. Linkage rod may need to be cut down to size. Linkage arms should be parallel.
- 12. Ensure dampers are fully open or closed and tighten linkage arms to damper rods. Linkage assembly should be able to open and close dampers fully without interference. Adjust accordingly.
- 13. Ensure one set of dampers is fully open and the other fully closed. Adjust linkage assembly no. 1 to allow travel without interference and tighten to DR2 and DR3.
- 14. The actuator should now be able to power the dampers fully open and fully closed without interference. Adjust linkage assemblies as need.

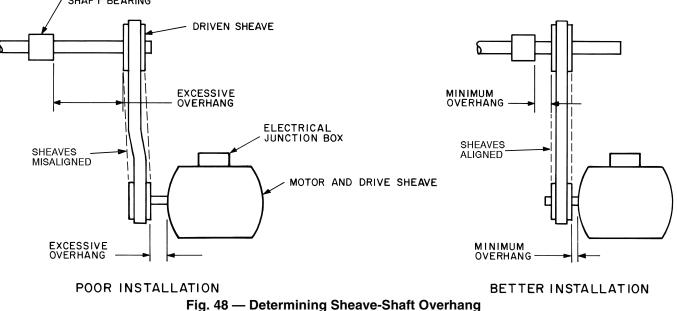
Install Sheaves on Motor and Fan Shafts -Factory-supplied drives are prealigned and tensioned, however,

Carrier recommends that the belt tension and alignment be checked before starting the unit. Always check the drive alignment after adjusting belt tension.

When field installing or replacing sheaves, install sheaves on fan shaft and motor shaft for minimum overhang. (See Fig. 48.) Use care when mounting sheave on fan shaft; too much force may damage bearing. Remove rust-preventative coating or oil from shaft. Make sure shaft is clean and free of burrs. Add grease or lubricant to bore of sheave before installing.

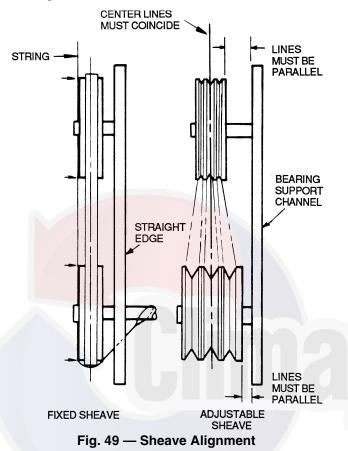
ALIGNMENT — Make sure that fan shafts and motor shafts are parallel and level. The most common causes of misalignment are nonparallel shafts and improperly located sheaves. Where shafts are not parallel, belts on one side are drawn tighter and pull more than their share of the load. As a result, these belts wear out faster, requiring the entire set to be replaced before it has given maximum service. If misalignment is in the sheave, belts will enter and leave the grooves at an angle, causing excessive belt cover and sheave wear.

- 1. Shaft alignment can be checked by measuring the distance between the shafts at 3 or more locations. If the distances are equal, then the shafts will be parallel.
- 2. Check alignment of sheaves:


Fixed sheaves — To check the location of the fixed sheaves on the shafts, a straightedge or a piece of string can be used. If the sheaves are properly lined up the string will touch them at the points indicated by the arrows in Fig. 49.

Adjustable sheave — To check the location of adjustable sheave on shaft, make sure that the centerlines of both sheaves are in line and parallel with the bearing support channel. See Fig. 49. Adjustable pitch drives are installed on the motor shaft.

With adjustable sheave, do not exceed maximum fan rpm.


3. Rotating each sheave a half revolution will determine whether the sheave is wobbly or the drive shaft is bent. Correct any misalignment.

4. With sheaves aligned, tighten cap screws evenly and progressively.

NOTE: There should be a 1/8-in. to 1/4-in. gap between the mating part hub and the bushing flange. If gap is closed, the bushing is probably the wrong size.

5. With taper-lock bushed hubs, be sure the bushing bolts are tightened evenly to prevent side-to-side pulley wobble. Check by rotating sheaves and rechecking sheave alignment.

Install V-Belts — *When installing or replacing belts, always use a complete set of new belts.* Mixing old and new belts will result in the premature wear or breakage of the newer belts.

1. Always adjust the motor position so that V-belts can be installed without stretching over grooves. Forcing belts can result in uneven stretching and a mismatched set of belts.

2. Do not allow belt to bottom out in sheave.

- 3. Tighten belts by turning motor-adjusting jackscrews. Turn each jackscrew an equal number of turns.
- 4. Equalize belt slack so that it is on the same side of belt for all belts. Failure to do so may result in uneven belt stretching.
- 5. Tension new drives at the maximum deflection force recommended (Fig. 50).

6. To determine correct belt tension, use the deflection formula given below and the tension data from Fig. 50 as follows:

EXAMPLE:

Given

Belt Span 16 in. Belt Cross-Section A, Super Belt Small Sheave Pitch Diameter 5 in

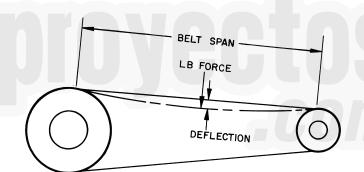
eflection =
$$\frac{(\text{Belt Span})}{64}$$

<u>Solution</u>

D

1. From Fig. 50 find that deflection force for type A, super belt with 5-in. small sheave pitch diameter is 4 to 5¹/₂ lb.

2.


Deflection =
$$\frac{16}{64}$$

3. Increase or decrease belt tension until force required for $\frac{1}{4}$ -in. deflection is $\frac{51}{2}$ lb.

Check belt tension at least twice during first operating day. Readjust as required to maintain belt tension within the recommended range.

With correct belt tension, belts may slip and squeal momentarily on start up. This slippage is normal and disappears after unit reaches operating speed. *Excessive belt tension shortens belt life and may cause bearing and shaft damage.*

After run-in, set belt tension at lowest tension at which belts will not slip during operation.

	SMALL	[DEFLE	CTION	FORC	E — L	В
BELT CROSS SECTION	SHEAVE PD RANGE		per Its	-	tch Its	Steel Cable Belts	
CLOHION	(in.)	Min	Max	Min	Max	Min	Max
	3.0- 3.6	3	4 ¹ / ₄	3 ⁷ /8	5 ¹ / ₂	3	4
Α	3.8- 4.8	3 ¹ / ₂	5	4 ¹ / ₂	6 ¹ / ₄	33/4	4 ³ / ₄
	5.0- 7.0	4	5 ¹ / ₂	5	6 ⁷ /8	4 ¹ / ₄	5 ¹ /4
В	3.4- 4.2	4	5 ¹ / ₂	5 ³ / ₄	8	4 ¹ / ₂	5 ¹ / ₂
	4.4- 5.6	5 ¹ /8	7 ¹ /8	6 ¹ / ₂	9 ¹ / ₈	5 ³ /4	7 ¹ /4
	5.8- 8.6	6 ³ /8	83/4	7 ³ /8	10 ¹ /8	7	8 ³ /4
С	7.0- 9.4	11 ¹ / ₄	14 ³ /8	13 ³ / ₄	17 ⁷ /8	11 ¹ / ₄	14
C	9.6-16.0	1 4 ¹ / ₈	18 ¹ / ₂	15 ¹ /4	20 ¹ / ₄	14 ¹ / ₄	17 ³ / ₄
3V	2.65-3.65	3 ¹ / ₂	5	3 ⁷ /8	5 ¹ / ₂	_	—
31	4.12-6.90	4 ³ / ₄	6 ⁷ /8	5 ¹ / ₄	7 ⁷ /8	_	—
	4.40-6.70	—	—	10	15	—	
5V	7.1-10.9	10 ¹ / ₂	15 ³ / ₄	12 ⁷ /8	18 ³ / ₄	—	—
	11.8-16.0	13	19 ¹ / ₂	15	22		
8V	12.5-17.0	27	40 ¹ / ₂	—	—		—
ÖV	18.0-22.4	30	45	—	—	—	—

PD — Pitch Diameter, inches

Fig. 50 — Fan Belt Tension Data

Water and Steam Coil Piping Recommendations

GENERAL — Use straps around the coil casing to lift and place the coil.

To prevent damage to the coil or coil headers: Do not use the headers to lift the coil. Support the piping and coil connections independently. Do not use the coil connections to support piping. When tightening coil connections, use a backup wrench on the nozzles.

Piping practices are outlined in the Carrier System Design Manual, Part 3, Piping Design.

WATER COILS — Typically, coils are piped by connecting the supply at the bottom and the return at the top. This is not always the case, especially if the coil hand has been changed in the field. Coils must be piped for counterflow; otherwise, a capacity reduction of 5% for each coil row will result. To ensure counterflow, chilled water coils are piped so that the coldest water meets the coldest air. Hot water coils are piped so that the warmest water meets the warmest air. Some 39S coils have 3 connections on either side of the coil (for a total of 6 connections). In these cases, the middle connection is used as the re-

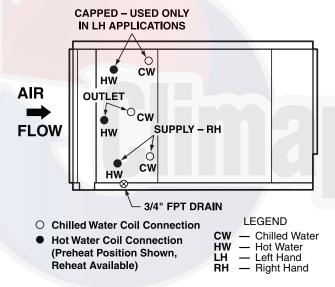


Fig. 51 — Water Coil Connection

turn connection. See Fig. 51.

STEAM COILS — Position the steam supply connection at the top of the coil, and the return (condensate) connection at the bottom.

Figure 52 illustrates the normal piping components and the suggested locations for high, medium, or low-pressure steam coils. The low-pressure application (zero to 15 psig) can dispense with the ¹/₄-in. petcock for continuous venting located above the vacuum breaker (check valve).

Note the horizontal location of the 15-degree check valve, and the orientation of the gate/pivot. This valve is intended to relieve any vacuum forming in the condensate outlet of a condensing steam coil, and to seal this port when steam pressure is again supplied to the coil. It must not be installed in any other position, and should not be used in the supply line. For coils used in tempering service, or to preheat outside air, install an immersion thermostat in the condensate line ahead of the trap. This will shut down the supply fan and close the outdoor damper whenever the condensate falls to a predetermined point, perhaps 120 F.

NOTE: Do NOT use an immersion thermostat to override a duct thermostat and open the steam supply valve.

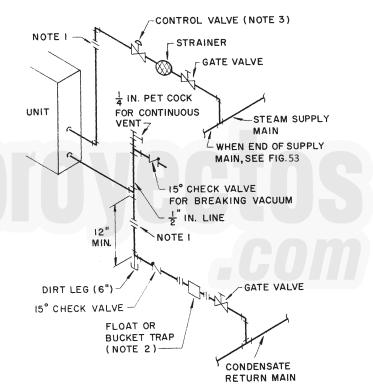
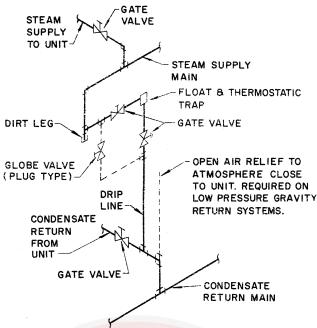

For vacuum return systems, the vacuum breaking check valve would be piped into the condensate line between the trap and the gate valve instead of open to the atmosphere.

Figure 53 illustrates the typical piping at the end of every steam supply main. Omitting this causes many field problems and failed coils.

Figure 54 shows the typical field piping of multiple coils. Use this only if the coils are the same size and have the same pressure drop. If this is not the case, an individual trap must be provided for each coil.

Figure 55 shows a multiple coil arrangement applied to a gravity return, including the open air relief to the atmosphere, which DOES NOT replace the vacuum breakers.


Figure 56 illustrates the basic condensate lift piping.

NOTES:

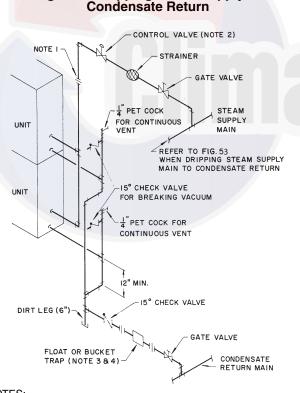
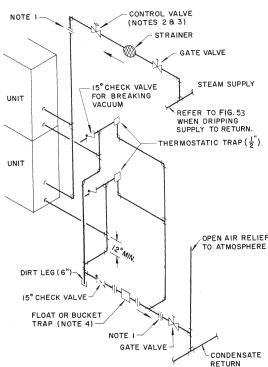

- 1. Flange or union is located to facilitate coil removal.
- 2. Flash trap may be used if pressure differential between steam and condensate return exceeds 5 psi.
- When a bypass with control is required.
 Dirt leg may be replaced with a strainer. If so, tee on drop can
- be replaced by a reducing ell.
- The petcock is not necessary with a bucket trap or any trap which has provision for passing air. The great majority of high or medium pressure returns end in hot wells or deaerators which vent the air.

Fig. 52 — Low, Medium or High Pressure Coil Piping


NOTES:

- 1. A bypass is necessary around trap and valves when continuous operation is necessary. Bypass to be the same size as trap orifice but never less than
- 2. 1/2 inch. Fig. 53 — Dripping Steam Supply to

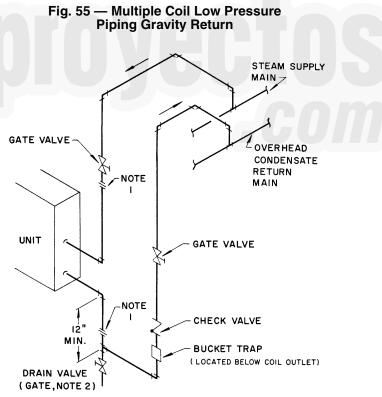

- NOTES: Flange or union is located to facilitate coil removal.
- 2. When a bypass with control is required.
- Flash trap can be used if pressure differential between supply З. and condensate return exceeds 5 psi.
- Coils with different pressure drops require individual traps. This 4. is often caused by varying air velocities across the coil bank.
- 5. Dirt leg may be replaced with a strainer. If so, tee on drop can be replaced by a reducing ell.
- The petcock is not necessary with a bucket trap or any trap which has provision for passing air. The great majority of high pressure return mains terminate in hot wells or deaerators which vent the air.

Fig. 54 — Multiple Coil High Pressure Piping

NOTES:

- 1. Flange or union is located to facilitate coil removal.
- When control valve is omitted on multiple coils in parallel air 2. flow.
- When a bypass with control is required. 3.
- Coils with different pressure drops require individual traps. This 4 is often caused by varying air velocities across the coil bank.

NOTES:

- 1. Flange or union is located to facilitate coil removal.
- To prevent water hammer, drain coil before admitting steam. Do not exceed one foot of lift between trap discharge and return main for each pound of pressure differential. 3.
- 4. Do not use this arrangement for units handling outside air.

Fig. 56 — Condensate Lift to Overhead Return

Following the piping diagrams in Fig. 52-56, make all connections while observing the following precautions:

- Install a drip line and trap on the pressure side of the inlet control valve. Connect the drip line to the return line downstream of the return line trap.
- To prevent scale or foreign matter from entering the control valve and coil, install a ³/₃₂-in. mesh strainer in the steam supply line upstream from the control valve.
- Provide air vents for the coils to eliminate noncondensable gases.
- Select a control valve according to the steam load, not the coils supply connection size. Do not use an oversized control valve.
- Do not use bushings that reduce the size of the header return connection. The return connection should be the same size as the return line and reduced only at the downstream trap.
- To lift condensate above the coil return line into overhead steam mains, or pressurized mains, install a pump and receiver between the condensate trap and the pressurized main. Do not try to lift condensate with modulating or on-and-off steam control valves. Use only 15-degree check valves, as they open with a lower water head. Do not use 45-degree or vertical-lift check valves.
- Use float and thermostatic traps. Select the trap size according to the pressure difference between the steam supply main and the return main.
- Load variations can be caused by uneven inlet air distribution or temperature stratification.
- Drain condensate out of coils completely at the end of the heating season to prevent the formation of acid.

Coil Freeze-Up Protection

WATER COILS — If a chilled water coil is applied with outside air, provisions must be made to prevent coil freeze-up. Install a coil freeze-up thermostat to shut down the system if any air temperature below 36 F is encountered entering the water coil. Follow thermostat manufacturer's instructions.

When a water coil is applied downstream of a directexpansion (DX) coil, a freeze-up thermostat must be installed between the DX and water coil and electrically interlocked to turn off the cooling to prevent freeze-up of the water coil.

For outdoor-air application where intermittent chilled water coil operation is possible, one of the following steps should be taken:

- Install an auxiliary blower heater in cabinet to maintain above-freezing temperature around coil while unit is shut down.
- Drain coils and fill with an ethylene glycol solution suitable for the expected cold weather operation. Shut down the system and drain coils. See Service section, Winter Shutdown.

STEAM COILS — When used for preheating outdoor air in pressure or vacuum systems, an immersion thermostat to control outdoor-air damper and fan motor is recommended. This control is actuated when steam supply fails or condensate temperature drops below an established level, such as 120 to 150 F. A vacuum breaker should also be used to equalize coil pressure with the atmosphere when steam supply throttles close. Steam should not be modulated when outdoor air is below 40 F.

On low-pressure and vacuum steam-heating systems, the thermostat may be replaced by a condensate drain with a thermal element. This element opens and drains the coil when condensate temperature drops below 165 F. Note that condensate drains are limited to 5 psig pressure.

INNER DISTRIBUTING TUBE STEAM COILS — The inner distributing tube (IDT) steam coil used in the 39S air-handling units has an inner tube pierced to facilitate the distribution of the steam along the tube's length. The outer tubes are

expanded into plate fins. The completed assembly includes the supply and condensate header and side casings which are built to slant the fin/tube bundle back toward the condensate header. The slanting of the assembly ensures that condensate will flow toward the drains. This condensate must be removed through the return piping to prevent premature failure of the coil. The fin/tube bundle is slanted vertically for horizontal airflow coils, and horizontally for vertical airflow coils.

<u>IDT Steam Coil Piping</u> — The following piping guidelines will contribute to efficient coil operation and long coil life:

- 1. Use full size coil outlets and return piping to the steam trap. Do not bush return outlet to the coil. Run full size to the trap, reduce at the trap.
- 2. Use float and thermostatic (F & T) traps only for condensate removal. Trap size selection should be based on the difference in pressure between the steam supply main and the condensate return main. It is good practice to select a trap with 3 times the condensate rating of the coil to which it is connected.
- 3. Use thermostatic traps for venting only.
- 4. Use only ¹/₂-in., 15-degree swing check valves installed horizontally, piped open to atmosphere, and located at least 12 in. above the condensate outlet. Do not use 45-degree, vertical lift and ring check valves.
- 5. The supply valve must be sized for the maximum anticipated steam load.
- 6. Do not drip steam mains into coil sections. Drip them on the pressure side of the control valve and trap them into the return main beyond the trap for the coil.
- 7. Do not use a single trap for two or more coils installed in series. Where two or more coils are installed in a single bank, in parallel, the use of a single trap is permissible, but only if the load on each coil is equal. Where loads in the same coil bank vary, best practice is to use a separate trap for each coil.

Variation in load on different coils in the same bank may be caused by several factors. Two of the most common are uneven airflow distribution across the coil and stratification of inlet air across the coil.

- 8. Do not try to lift condensate above the coil return into an overhead main, or drain into a main under pressure with a modulating or on/off steam control valves. A pump and receiver should be installed between the coil condensate traps and overhead mains and return mains under pressure.
- 9. Use a strainer $({}^{3}/{}_{32}$ -in. mesh) on the steam supply side, as shown in the piping diagrams, to avoid collection of scale or other foreign matter in the inner tube distributing orifices.

NOTE: IDT coils must be installed with the tubes draining toward the header end of the coil. The IDT steam coils are pitched toward the header end as installed in the unit.

- 10. Ensure the AHU (air-handling unit) is installed level to maintain the inherent slope. Also ensure the unit is installed high enough to allow the piping to be installed correctly, especially the traps which require long drip legs.
- 11. Do not fail to provide all coils with the proper air vents to eliminate noncondensable gasses.
- 12. Do not support steam piping from the coil units. Both mains and coil sections should be supported separately.

<u>IDT Steam Coil Installation</u> — Refer to drawings to position the coils properly with regard to the location of the supply and return connections. Ensure that the IDT coil is pitched with the tubes draining toward the header. The AHUs provide proper coil pitch when the AHU is installed level.

Refer to schematic piping diagrams and piping connection notes for the recommended piping methods.

Refrigerant Piping, Direct-Expansion (DX) Coils — Direct-expansion coils are divided into 1 or 2 splits depending upon the unit size and coil circuiting. Each split requires its own distributor nozzle, expansion valve, and suction piping. Suction connections are on the air entering side when the coil is properly installed. Matching distributor connections for each coil split are on the air leaving side. See unit label or certified drawing to assure connection to matching suction and liquid connections.

The lower split of face split coils should be first on, last off.

Row split coils utilize special intertwined circuits; either split of these row split coils can be *first on, last off.*

Direct-expansion coils are shipped pressurized with dry nitrogen. Release pressure from each coil split through valves in protective caps before removing caps.

Do not leave piping open to the atmosphere unnecessarily. Water and water vapor are detrimental to the refrigerant system. Until the piping is complete, recap the system and charge with nitrogen at the end of each workday. Clean all piping connections before soldering joints.

Failure to follow these procedures could result in personal injury or equipment damage.

SUCTION PIPING — Connect suction piping as shown in Fig. 57 for face split coil.

TXV — Thermostatic Expansion Valve

Fig. 57 — Face Split Coil Suction Line Piping

Suction line from coil connection to end of the 15-diameterlong riser should be same tube size as coil connection to ensure proper refrigerant velocity.

Refer to Carrier System Design Manual, Part 3, and size remaining suction line to compressor for a pressure drop equivalent to 2.0 F. This will provide a total suction line header pressure drop equivalent to approximately 2.5 F. Refer to Fig. 58 for piping risers to the compressor.

To minimize the possibility of flooded starts and compressor damage during prolonged light load operation, install an accumulator in the suction line or a solenoid in the liquid line of *last-on*, *first off* split in row-split applications.

EXPANSION VALVE PIPING — Distributor nozzles and expansion valves sized for acceptable performance for a range of conditions are factory supplied. Use the AHU (air-handling unit) selection program in the electronic catalog to select optimal nozzle sizes.

Circuiting selection should result in a circuit loading of 0.8 to 2.0 tons per circuit at design load. Circuit loading must be evaluated at minimum load to ensure that it does not drop below 0.6 tons per circuit. Solenoid valves may be used, if necessary, to shut off the refrigerant supply to individual expansion valves to maintain adequate coil circuit loading.

Compressor minimum unloading and TXV quantity is necessary to determine minimum tonnage per circuit.

Minimum Unloading Equation:

(Tons per Circuit) x (Minimum Unloading) x (Total no. of TXVs)

no. of TXVs Active

Example:

Condensing Unit: 38ARS012

Minimum Unloading:33%

Coil: 6 row, 11 FPI, Half Circuit

Coil Tons per Circuit: 1.68

Total TXVs: 2

In the first example we will determine the tons per circuit when both TXVs are active and the compressor is unloaded to its minimum of 33%.

(1.68 Tons per Circuit) x (33% Minimum Unloading)	
x (2 TXVs)	

2 TXVs Active

 $= \frac{(1.68) x (.33) x (2)}{2}$

= .55 tons per circuit at minimum unloading UNACCEPTABLE

If we install a liquid line solenoid valve before one of the TXVs and close it so that only one TXV is active when the compressor is unloaded to its minimum of 33%, we see the following:

_	(1.68 Tons per Circuit) x (33% Minimum Unloading) x (2 TXVs)
_	1 TXV Active
=	(1.68) x (.33) x (2)

= 1.10 tons per circuit at minimum unloading ACCEPTABLE

There are three different options to control tons per circuit when using an unloading compressor. The first is to use drop solenoid valve control as illustrated above and let the suction cutoff unloaders "ride" with the load. The second is to use drop solenoid valve control as illustrated above with electric unloaders and let the control algorithm determine the combination of solenoid valves and unloaders to limit tons per circuit to acceptable limits. The third is to limit the minimum amount of unloading so that tons per circuit is within acceptable limits.

Electric Heaters — Electric heaters may be factoryinstalled or factory-supplied for field installation.

Motor Start/Stop Stations

To avoid possible injury or death due to electrical shock, open the power supply disconnect switch and secure it in an open position during installation.

Use only copper conductors for field-installed electrical wiring. Unit terminals are not designed to accept other types of conductors.

All field-installed wiring, including the electrical ground, MUST comply with the National Electrical Code (NEC) as well as applicable local codes. In addition, all field wiring must conform to the Class II temperature limitations described in the NEC.

Refer to Fig. 59 and 60 for optional factory-installed motor start/stop station wiring diagrams.

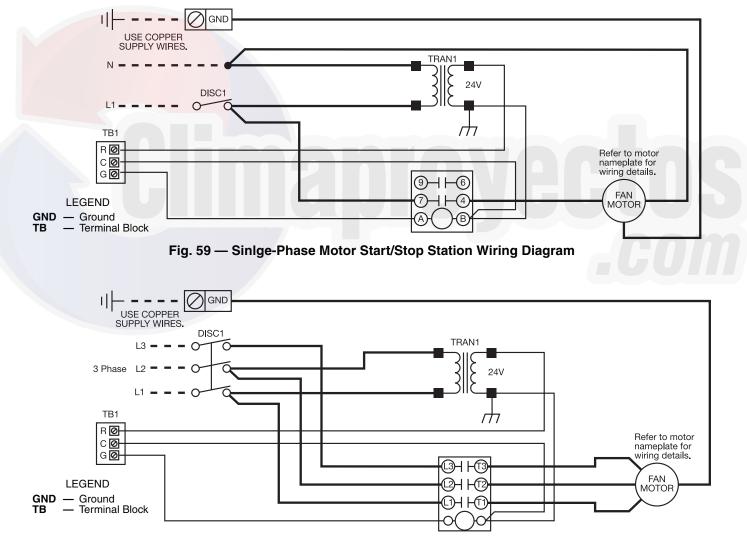


Fig. 60 — 3-Phase Motor Start/Stop Station Wiring Diagram

START-UP

Check List — Make a walkway inside unit components to protect insulation. Remove all construction debris from unit interior. *Remove walkway before starting unit.*

FILTERS — Install unit filters in all filter sections.

FANS

- 1. Check lubrication of fan, motor bearings, and linkages.
 - a. Note that bearings are shipped completely full of grease for corrosion protection and may run warm temporarily on start-up until excess grease has discharged.
 - b. Hand-operate all damper linkages to check for freedom of movement.
- Check tightness of bearing setscrews or locking collars. Also, check tightness of setscrews on fan wheels and sheaves.
- 3. Check tightness of fan shaft bearing mounting.
- 4. Recheck sheave alignment and belt tension. (Refer to Fig. 49 and 50.)
- 5. Hand turn fan to make certain fan wheel does not rub in housing.
- 6. Check fan speed with a strobe-type tachometer or use the following formula: Obtain the motor rpm from the fan motor nameplate and read sheave pitch diameters marked on the fan and motor pulleys, or estimate the pitch diameters by using the pulley outside diameters. Then:

Motor Rpm x Motor Sheave					
Ean Dann -	Pitch Diameter (in.)				
Fan Rpm =Fan Fan Rpm =Fan Rpm =	n She	ave Pitch Dia	meter (in.)		
Example:					
		<u>Actual</u>	Approximate		
Nameplate Motor		1=60	17.0		
Rpm	=	1760	1760		
Mtr Sheave Pitch		0.0.	0.0 (0.0)		
Diameter	=	8.9 in.	9.0 (OD)		
Fan Sheave Pitch					
Diameter	=	12.4 in.	12.5 (OD)		
Fan Rpm	=	<u>1760 x 8.9</u>	<u>1760 x 9</u>		
	=	12.4	12.5		
	=	1263 Rpm	1267 Rpm		

Refer to the product data catalog for maximum allowable fan speeds for standard wheels. *Excessive fan speed may result in condensate carryover from cooling coil or fan motor overload and wheel failure.*

7. Check direction of rotation (see Fig. 61). Arrow on drive side of fan housing indicates correct direction of rotation.

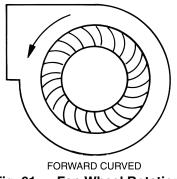


Fig. 61 — Fan Wheel Rotation

- 8. Check vibration. If excessive vibration occurs, check for the following:
 - a. Variable sheave (if air balance of system has been accomplished: replace sheave with fixed sheave for continuous application).
 - b. Drive misalignment.
 - c. Mismatched, worn or loose belts.
 - d. Wheel or sheaves loose on shaft.
 - e. Loose bearings.
 - f. Loose mounting bolts.
 - g. Motor out of balance.
 - h. Sheaves eccentric or out of balance.
 - i. Vibration isolators improperly adjusted.
 - j. Out-of-balance or corroded wheel (rebalance or replace if necessary).
 - k. Accumulation of material on wheel (remove excess material).

SERVICE

General

- 1. Place a suitable walkway to protect floor insulation whenever entering the fan section.
- 2. Review Safety Considerations at beginning of these instructions. Good safety habits are important tools when performing service procedures.
- 3. To make speed measurements, use a strobe-style tachometer or calculate per Step 6 of Start-Up, Check List.

Fan Motor Replacement

- 1. Shut off motor power.
- 2. Disconnect and tag power wires at motor terminals.
- 3. Loosen motor brace-to-mounting-rail attaching bolts. Loosen belt tensioning bolts to adjust the motor position so V-belts can be removed without stretching over grooves.
- 4. Mark belt as to position. Remove and set aside belts.
- 5. Remove motor to motor bracket holddown bolts.
- 6. Remove motor pulley and set aside.
- 7. Remove motor.
- Install new motor. Reassemble by reversing Steps 1-6. Be sure to reinstall multiple belts in their original position. Use a complete new set if required. Do not stretch belts over sheaves. Review the sections on motor and sheave installation, sheave alignment and belt tensioning discussed previously (Fig. 48-50).
- 9. Reconnect motor leads and restore power. Check fan for proper rotation as described in Start-Up, Check List.

Coil Cleaning

DETERGENT — Spray mild detergent solution on coils with garden-type sprayer. Rinse with fresh water. Check to ensure condensate line is free. Excess water from cleaning may flood unit if condensate line is plugged.

Winter Shutdown (Chilled Water Coil Only)

ANTIFREEZE METHODS OF COIL PROTECTION

- 1. Close coil water supply and return valves.
- 2. Drain coil as follows:

Method I — 'Break' flange of coupling at each header location. Separate flange or coupling connection to facilitate coil draining.

Method II --- Open both valves to auxiliary drain piping.

3. After coil is drained:

Method I — Connect line with a service valve and union from upper nozzle to an antifreeze reservoir. Connect a self-priming reversible pump between the low header connection and the reservoir.

Method II — Make connection to auxiliary drain valves.

- 4. Fill reservoir with any inhibited antifreeze acceptable to code and underwriter authority.
- 5. Open service valve and circulate solution for 15 minutes; then check its strength.
- 6. If solution is too weak, add more antifreeze until desired strength is reached, then circulate solution through coil for 15 minutes or until concentration is satisfactory.
- 7. Remove upper line from reservoir to reversible pump. Drain coil to reservoir and then close service valve.
- 8. Break union and remove reservoir and its lines.
- 9. Leave coil flanges or coupling open and auxiliary drain valves open until spring.

AIR DRYING METHOD OF COIL PROTECTION (Unit and coil must be level for this method.)

- 1. Close coil water supply and return main valves.
- 2. Drain coil as described in procedures for Antifreeze Methods of Coil Protection.
- 3. Connect air supply or air blower to inlet header connection and close its drain connection.
- 4. Circulate air and check for air dryness by holding mirror in front of open vent in outlet header drain connection. Mirror will fog if water is still present.
- 5. Allow coil to stand for a few minutes; repeat Step 4 until coil is dry.

PIPING — Direct expansion, chilled water, and hot water coils should always be piped for counterflow. (Fluid should enter the coil at the leaving-air side.) Steam coils must have the condensate connection at bottom of coil.

To determine intervals for cleaning coils in contaminated air operations, pressure taps should be installed across the coils and checked periodically. Abnormal air pressure drop will indicate a need for cleaning the coils.

Annual maintenance should include:

- 1. Clean the line strainers.
- 2. Blow down the dirt leg.
- 3. Clean and check operation of steam traps.
- 4. Check operation of control valves.
- 5. Check the operation of check valves to prevent condensate flowback.
- 6. Check operation of thermostatic air vents, if used. A float and thermostatic trap will contain a thermostatic air vent. When the bellows is ruptured, it will fail closed.

- 7. Check operation of vacuum breakers.
- 8. Check operation of the thermal protection devices used for freeze-up protection.
- 9. Steam or condensate should not be allowed to remain in the coil during the off season. This will prevent the formation and build up of acids.

There are additional precautions and control strategies, as found in various catalogues and in the ASHRAE Fundamentals Handbook and in the Carrier System Design Guide — Piping Section, when the entering-air temperature to the coil falls below 35 F. These conditions occur when IDT coils are used for pre-heat and/or face and bypass applications.

Freeze up protection:

- 1. Use a strainer in the supply line and the dirt leg ahead of the trap.
- 2. Use a vacuum breaker in the return.
- 3. Do not use overhead returns from the coil. A floodback can occur.
- 4. An immersion thermostat to control outdoor-air dampers and the fan motor is recommended. This control is activated when the steam supply fails or the condensate temperature drops below a predetermined temperature, usually 120 F.
- 5. On low pressure and vacuum systems, the immersion thermostat may be replaced by a condensate drain with a thermal element. This element opens and drains the coil when the condensate temperature drops below 165 F. Note the thermal condensate drain is limited to 5 psig pressure. At greater coil pressures they will not open.

In spite of the precautions listed above, a coil may still freeze up. An oversize capacity coil, at partial load, with a modulating steam control valve will occasionally freeze. Freezing occurs in the 20 F to 35 F range of entering-air temperatures. A better installation would be an undersize coil, with an on/off control valve with thermostatic control in the outside air, set at 35 F air temperature, installed downstream of the first coil; or setting the minimum steam pressure at 5 psig.

Filters

FILTER SECTIONS — Open or remove filter panel to replace old filter with a new filter. See physical data tables for filter data.

Lubrication

MOTORS — Lubricate in accordance with nameplate attached to motor or with manufacturer's recommendations included with motor.

BEARINGS

<u>Fan Bearings</u> — Lubricate fan bearings in accordance with manufacturer's recommendations included with blower.

Packaged Service Training programs are an excellent way to increase your knowledge of the equipment discussed in this manual, including:

- Unit Familiarization
- Maintenance
- Installation Overview

- Operating Sequence

A large selection of product, theory, and skills programs are available, using popular video-based formats and materials. All include video and/or slides, plus companion book.

Classroom Service Training which includes "hands-on" experience with the products in our labs can mean increased confidence that really pays dividends in faster troubleshooting and fewer callbacks. Course descriptions and schedules are in our catalog.

CALL FOR FREE CATALOG 1-800-644-5544

[] Packaged Service Training [] Classroom Service Training

Copyright 2008 Carrier Corporation